Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127201    DOI: 10.1088/1674-1056/acf5ce
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity

Atanu Nandy
Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata West Bengal-700 131, India
Abstract  Controlled Aharonov-Bohm caging of wave train is reported in a quasi-one-dimensional version of Lieb geometry with next-nearest-neighbor hopping integral within the tight-binding framework. This longer-wavelength fluctuation is considered by incorporating periodic, quasi-periodic or fractal kind of geometry inside the skeleton of the original network. This invites exotic eigenspectrum displaying a distribution of flat band states. Also a subtle modulation of external magnetic flux leads to a comprehensive control over those non-resonant modes. Real space renormalization group method provides us an exact analytical prescription for the study of such tunable imprisonment of excitation. The non-trivial tunability of external agent is important as well as challenging in the context of experimental perspective.
Keywords:  caging      flat band      interferometer      renormalization  
Received:  26 March 2023      Revised:  06 August 2023      Accepted manuscript online:  01 September 2023
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: The author is thankful for the stimulating discussions regarding the results with Dr. Amrita Mukherjee.
Corresponding Authors:  Atanu Nandy     E-mail:  atanunandy1989@gmail.com

Cite this article: 

Atanu Nandy Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity 2023 Chin. Phys. B 32 127201

[1] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R R 2015 Phys. Rev. Lett. 114 245504
[2] Mukherjee S and Thomson R R 2015 Opt. Lett. 40 5443
[3] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503
[4] Anderson P W 1958 Phys. Rev. 109 1492
[5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[6] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817
[7] Masumoto N, Kim N Y, Byrnes T, Kusudo K, Löffler A, Höfling S, Forchel A and Yamamoto Y 2012 New J. Phys. 14 065002
[8] Dias R G and Gouveia J D 2015 Sci. Rep. 5 16852
[9] Hyrkäs M, Apaja V and Manninen M 2013 Phys. Rev. A 87 023614
[10] Morales-Inostroza L and Vicencio R A 2016 Phys. Rev. A 94 043831
[11] Ramachandran A, Andreanov A and Flach S 2017 Phys. Rev. B 96 161104
[12] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001
[13] Bodyfelt J D, Leykam D, Danieli C, Yu X and Flach S 2014 Phys. Rev. Lett. 113 236403
[14] Maimaiti W, Andreanov A, Park H C, Gendelman O and Flach S 2017 Phys. Rev. B 95 115135
[15] Leykam D, Andreanov A and Flach S 2018 Adv. Phys. X 3 1473052
[16] Sutherland B 1986 Phys. Rev. B 34 5208
[17] Goda M, Nishino S and Matsuda H 2006 Phys. Rev. Lett. 96 126401
[18] Chalker J T, Pickles T S and Shukla P 2010 Phys. Rev. B 82 104209
[19] Tasaki H 1992 Phys. Rev. Lett. 69 1608
[20] Maksymenko M, Honecker A, Moessner R, Richter J and Derzhko O 2012 Phys. Rev. Lett. 109 096404
[21] Kauppila V J, Aikebaier F and Heikkilä T T 2016 Phys. Rev. B 93 214505
[22] Peotta S and Törmä P 2015 Nat. Commun. 6 8944
[23] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803
[24] Kusakabe K and Aoki H 1994 Phys. Rev. Lett. 72 144
[25] Mielke A 1992 J. Phys. A: Math. Gen. 25 4335
[26] Lieb E H 1989 Phys. Rev. Lett. 62 1201
[27] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888
[28] Aharonov Y and Bohm D 1959 Phys. Rev. B 115 485
[29] Washburn S and Webb R A 1986 Adv. Phys. 35 375
[30] Büttiker M, Imry Y and Azbel M Ya 1984 Phys. Rev. A 30 1982
[31] Landauer R and Büttiker M 1985 Phys. Rev. Lett. 54 2049
[32] Levy Yeyati A and Büttiker M 1995 Phys. Rev. B 52 R14360
[33] Yacoby A, Heiblum M, Umansky V, Shtrikman H and Mahalu D 1994 Phys. Rev. Lett. 73 3149
[34] Aharony A, Entin-Wohlman O and Imry Y 2003 Phys. Rev. Lett. 90 156802
[35] Kubo T, Tokusain Y and Tarucha S 2010 J. Phys. A: Math. Theor. 43 354020
[36] Yamamoto M, Takada S, Bäuerle C, Watanabe K, Wieck A D and Tarucha S 2012 Nat. Nanotechol. 7 247
[37] Aharony A, Takada S, Entin-Wohlman O, Yamamoto M and Tarucha S 2014 New J. Phys. 16 083015
[38] Andrade Jr J S, Herrmann H J, Andrade R F S and Silva L R da 2005 Phys. Rev. Lett. 94 018702
[39] Cardoso A L, Andrade R F S and Souza A M C 2008 Phys. Rev. B 78 214202
[40] Lopes A A and Dias R G 2011 Phys. Rev. B 84 085124
[41] Bercioux D, Governale M, Cataudella V and Ramaglia V M 2004 Phys. Rev. Lett. 93 056802
[42] Sil S, Maiti S K and Chakrabarti A 2009 Phys. Rev. B 79 193309
[43] Movilla J L and Planelles J 2011 Phys. Rev. B 84 195110
[44] Aharony A, Tokura Y, Cohen G Z, Entin-Wohlman O and Katsumoto S 2011 Phys. Rev. B 84 035323
[45] Lowdin P O 1963 J. Mol. Spectrosc. 10 12
[46] Lowdin P O 1962 J. Math. Phys. 3 969
[47] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[48] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press)
[49] Dutta P, Maiti S K and Karmakar S N 2014 AIP Adv. 4 097126
[50] Dutta P, Maiti S K and Karmakar S N 2010 Org. Electron. 11 1120
[51] Dutta P, Maiti S K and Karmakar S N 2013 J. Appl. Phys. 114 034306
[52] Cheung H F, Gefen Y, Riedel E K and Shih W H 1988 Phys. Rev. B 37 6050
[53] Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B 35 1020
[54] Nandy A and Chakrabarti A 2015 Phys. Lett. A 379 2876
[55] Pal B, Patra P, Saha J P and Chakrabarti A 2013 Phys. Rev. A 87 023814
[56] Pal B and Chakrabarti A 2012 Phys. Rev. B 85 214203
[57] Southern B W, Kumar A A and Ashraff J A 1983 Phys. Rev. B 28 1785
[58] Nandy A and Chakrabarti A 2016 Phys. Rev. A 93 013807
[59] Nandy A, Pal B and Chakrabarti A 2015 J. Phys.: Condens. Matter 27 125501
[60] Nandy A 2021 Phys. Scr. 96 045802
[61] Hofstadter D R 1976 Phys. Rev. B 14 2239
[62] Gulácsi Z, Kampf A and Vollhardt D 2007 Phys. Rev. Lett. 99 026404
[63] Lopes A A and Dias R G 2011 Phys. Rev. B 84 085124
[64] Lopes A A, António B A Z and Dias R G 2014 Phys. Rev. B 89 235418
[65] Longhi S 2014 Opt. Lett. 39 5892
[66] Zong Y, Xia S, Tang L, Song D, Hu Y, Pei Y, Su J, Li Y and Chen Z 2016 Opt. Express 24 8877
[67] Weimann S, Morales-Inostroza L, Real B, Cantil-lano C, Szameit A and Vicencio R A 2016 Opt. Lett. 41 2414
[1] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[2] Degenerate polarization entangled photon source based on a single Ti-diffusion lithium niobate waveguide in a polarization Sagnac interferometer
Yu Sun(孙宇), Chang-Wei Sun(孙昌伟), Wei Zhou(周唯), Ran Yang(杨然), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), Ping Xu(徐平), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2023, 32(8): 080308.
[3] Stability of the topological quantum critical point between multi-Weyl semimetal and band insulator
Zhao-Kun Yang(杨兆昆), Jing-Rong Wang(王景荣), and Guo-Zhu Liu(刘国柱). Chin. Phys. B, 2023, 32(5): 056401.
[4] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[5] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[6] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[7] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[8] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[9] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[10] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[11] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[12] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[13] Improving the spectral purity of single photons by a single-interferometer-coupled microring
Yang Wang(王洋), Pingyu Zhu(朱枰谕), Shichuan Xue(薛诗川), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), Xuejun Yang(杨学军), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(3): 034210.
[14] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[15] Passively stabilized single-photon interferometer
Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海). Chin. Phys. B, 2022, 31(11): 110306.
No Suggested Reading articles found!