CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity |
Atanu Nandy† |
Department of Physics, Acharya Prafulla Chandra College, New Barrackpore, Kolkata West Bengal-700 131, India |
|
|
Abstract Controlled Aharonov-Bohm caging of wave train is reported in a quasi-one-dimensional version of Lieb geometry with next-nearest-neighbor hopping integral within the tight-binding framework. This longer-wavelength fluctuation is considered by incorporating periodic, quasi-periodic or fractal kind of geometry inside the skeleton of the original network. This invites exotic eigenspectrum displaying a distribution of flat band states. Also a subtle modulation of external magnetic flux leads to a comprehensive control over those non-resonant modes. Real space renormalization group method provides us an exact analytical prescription for the study of such tunable imprisonment of excitation. The non-trivial tunability of external agent is important as well as challenging in the context of experimental perspective.
|
Received: 26 March 2023
Revised: 06 August 2023
Accepted manuscript online: 01 September 2023
|
PACS:
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
72.15.Rn
|
(Localization effects (Anderson or weak localization))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: The author is thankful for the stimulating discussions regarding the results with Dr. Amrita Mukherjee. |
Corresponding Authors:
Atanu Nandy
E-mail: atanunandy1989@gmail.com
|
Cite this article:
Atanu Nandy Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity 2023 Chin. Phys. B 32 127201
|
[1] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R R 2015 Phys. Rev. Lett. 114 245504 [2] Mukherjee S and Thomson R R 2015 Opt. Lett. 40 5443 [3] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 Phys. Rev. Lett. 114 245503 [4] Anderson P W 1958 Phys. Rev. 109 1492 [5] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [6] Christodoulides D N, Lederer F and Silberberg Y 2003 Nature 424 817 [7] Masumoto N, Kim N Y, Byrnes T, Kusudo K, Löffler A, Höfling S, Forchel A and Yamamoto Y 2012 New J. Phys. 14 065002 [8] Dias R G and Gouveia J D 2015 Sci. Rep. 5 16852 [9] Hyrkäs M, Apaja V and Manninen M 2013 Phys. Rev. A 87 023614 [10] Morales-Inostroza L and Vicencio R A 2016 Phys. Rev. A 94 043831 [11] Ramachandran A, Andreanov A and Flach S 2017 Phys. Rev. B 96 161104 [12] Flach S, Leykam D, Bodyfelt J D, Matthies P and Desyatnikov A S 2014 Europhys. Lett. 105 30001 [13] Bodyfelt J D, Leykam D, Danieli C, Yu X and Flach S 2014 Phys. Rev. Lett. 113 236403 [14] Maimaiti W, Andreanov A, Park H C, Gendelman O and Flach S 2017 Phys. Rev. B 95 115135 [15] Leykam D, Andreanov A and Flach S 2018 Adv. Phys. X 3 1473052 [16] Sutherland B 1986 Phys. Rev. B 34 5208 [17] Goda M, Nishino S and Matsuda H 2006 Phys. Rev. Lett. 96 126401 [18] Chalker J T, Pickles T S and Shukla P 2010 Phys. Rev. B 82 104209 [19] Tasaki H 1992 Phys. Rev. Lett. 69 1608 [20] Maksymenko M, Honecker A, Moessner R, Richter J and Derzhko O 2012 Phys. Rev. Lett. 109 096404 [21] Kauppila V J, Aikebaier F and Heikkilä T T 2016 Phys. Rev. B 93 214505 [22] Peotta S and Törmä P 2015 Nat. Commun. 6 8944 [23] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803 [24] Kusakabe K and Aoki H 1994 Phys. Rev. Lett. 72 144 [25] Mielke A 1992 J. Phys. A: Math. Gen. 25 4335 [26] Lieb E H 1989 Phys. Rev. Lett. 62 1201 [27] Vidal J, Mosseri R and Doucot B 1998 Phys. Rev. Lett. 81 5888 [28] Aharonov Y and Bohm D 1959 Phys. Rev. B 115 485 [29] Washburn S and Webb R A 1986 Adv. Phys. 35 375 [30] Büttiker M, Imry Y and Azbel M Ya 1984 Phys. Rev. A 30 1982 [31] Landauer R and Büttiker M 1985 Phys. Rev. Lett. 54 2049 [32] Levy Yeyati A and Büttiker M 1995 Phys. Rev. B 52 R14360 [33] Yacoby A, Heiblum M, Umansky V, Shtrikman H and Mahalu D 1994 Phys. Rev. Lett. 73 3149 [34] Aharony A, Entin-Wohlman O and Imry Y 2003 Phys. Rev. Lett. 90 156802 [35] Kubo T, Tokusain Y and Tarucha S 2010 J. Phys. A: Math. Theor. 43 354020 [36] Yamamoto M, Takada S, Bäuerle C, Watanabe K, Wieck A D and Tarucha S 2012 Nat. Nanotechol. 7 247 [37] Aharony A, Takada S, Entin-Wohlman O, Yamamoto M and Tarucha S 2014 New J. Phys. 16 083015 [38] Andrade Jr J S, Herrmann H J, Andrade R F S and Silva L R da 2005 Phys. Rev. Lett. 94 018702 [39] Cardoso A L, Andrade R F S and Souza A M C 2008 Phys. Rev. B 78 214202 [40] Lopes A A and Dias R G 2011 Phys. Rev. B 84 085124 [41] Bercioux D, Governale M, Cataudella V and Ramaglia V M 2004 Phys. Rev. Lett. 93 056802 [42] Sil S, Maiti S K and Chakrabarti A 2009 Phys. Rev. B 79 193309 [43] Movilla J L and Planelles J 2011 Phys. Rev. B 84 195110 [44] Aharony A, Tokura Y, Cohen G Z, Entin-Wohlman O and Katsumoto S 2011 Phys. Rev. B 84 035323 [45] Lowdin P O 1963 J. Mol. Spectrosc. 10 12 [46] Lowdin P O 1962 J. Math. Phys. 3 969 [47] Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) [48] Datta S 2005 Quantum Transport: Atom to Transistor (Cambridge: Cambridge University Press) [49] Dutta P, Maiti S K and Karmakar S N 2014 AIP Adv. 4 097126 [50] Dutta P, Maiti S K and Karmakar S N 2010 Org. Electron. 11 1120 [51] Dutta P, Maiti S K and Karmakar S N 2013 J. Appl. Phys. 114 034306 [52] Cheung H F, Gefen Y, Riedel E K and Shih W H 1988 Phys. Rev. B 37 6050 [53] Kohmoto M, Sutherland B and Tang C 1987 Phys. Rev. B 35 1020 [54] Nandy A and Chakrabarti A 2015 Phys. Lett. A 379 2876 [55] Pal B, Patra P, Saha J P and Chakrabarti A 2013 Phys. Rev. A 87 023814 [56] Pal B and Chakrabarti A 2012 Phys. Rev. B 85 214203 [57] Southern B W, Kumar A A and Ashraff J A 1983 Phys. Rev. B 28 1785 [58] Nandy A and Chakrabarti A 2016 Phys. Rev. A 93 013807 [59] Nandy A, Pal B and Chakrabarti A 2015 J. Phys.: Condens. Matter 27 125501 [60] Nandy A 2021 Phys. Scr. 96 045802 [61] Hofstadter D R 1976 Phys. Rev. B 14 2239 [62] Gulácsi Z, Kampf A and Vollhardt D 2007 Phys. Rev. Lett. 99 026404 [63] Lopes A A and Dias R G 2011 Phys. Rev. B 84 085124 [64] Lopes A A, António B A Z and Dias R G 2014 Phys. Rev. B 89 235418 [65] Longhi S 2014 Opt. Lett. 39 5892 [66] Zong Y, Xia S, Tang L, Song D, Hu Y, Pei Y, Su J, Li Y and Chen Z 2016 Opt. Express 24 8877 [67] Weimann S, Morales-Inostroza L, Real B, Cantil-lano C, Szameit A and Vicencio R A 2016 Opt. Lett. 41 2414 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|