Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118703    DOI: 10.1088/1674-1056/27/11/118703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of 3.7 T–24.5 T high magnetic fields on tumor-bearing mice

Xiaofei Tian(田小飞)1,2, Ze Wang(王泽)1,3, Lei Zhang(张磊)1, Chuanying Xi(郗传英)1, Li Pi(皮雳)1, Ziping Qi(齐紫平)1, Qingyou Lu(陆轻铀)1,3,4, Xin Zhang(张欣)1,2
1 High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
3 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;
4 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei 230031, China
Abstract  

Since high magnetic field (MF) intensity can improve the image quality and reduce magnetic resonance imaging (MRI) acquisition time, the field intensity of MRIs has continued to increase over the past few decades. Although MRIs in most current hospitals are 0.5 T-3 T, there are preclinical studies have been carried out using 9.4 T MRI, and engineers are also putting efforts on building MRIs with even higher MFs. However, the accompanied safety issue of high-field MRIs is an emergent question to address before their clinical applications. In the meantime, the static magnetic field (SMF) has been shown to inhibit tumor growth in previous studies. Here, we investigated both the safety issue and the anti-tumor potentials of 3.7 T-24.5 T SMFs on GIST-T1 gastrointestinal stromal tumor-bearing nude mice. We followed up the mice three weeks after their exposure to high SMF and found that none of the mice died or had severe organ damage, except for slightly decreased food intake, weight gain, and liver function. Moreover, the tumor growth was inhibited by 3.7 T-24.5 T SMFs (up to~54%). It is interesting that the effects are more dependent on MF gradient than intensities, and for the same gradient and intensity, mice responded differently to hypogravity and hypergravity conditions. Therefore, our study not only demonstrated the safeness of high SMFs up to 24.5 T on mice but also revealed their anti-tumor potentials in the future.

Keywords:  static magnetic field (SMF)      high magnetic field (MF)      tumor      magnetic field gradient  
Received:  28 June 2018      Revised:  10 September 2018      Accepted manuscript online: 
PACS:  87.17.-d (Cell processes)  
  87.19.xj (Cancer)  
  87.50.C- (Static and low-frequency electric and magnetic fields effects)  
  91.62.Uv (Life in extreme environments)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0400900 and 2017YFA0402903), the National Natural Science Foundation of China (Grant Nos. U1532151 and 51627901), the Major/Innovative Program of Development Foundation of Hefei Center for Physical Science, Technology (Grant No. 2016FXCX004), Hefei Science Center, CAS (Grant No. 2016HSC-IU007), and the CASHIPS Director's Fund (Grant No. YZJJ201704) to Qingyou Lu and Xin Zhang.

Corresponding Authors:  Qingyou Lu, Xin Zhang     E-mail:  qxl@ustc.edu.cn;xinzhang@hmfl.ac.cn

Cite this article: 

Xiaofei Tian(田小飞), Ze Wang(王泽), Lei Zhang(张磊), Chuanying Xi(郗传英), Li Pi(皮雳), Ziping Qi(齐紫平), Qingyou Lu(陆轻铀), Xin Zhang(张欣) Effects of 3.7 T–24.5 T high magnetic fields on tumor-bearing mice 2018 Chin. Phys. B 27 118703

[1] Wang J, Yang G and Liu F 2015 Acta Phys. Sin. 64 058707(in Chinese)
[2] Schepkin V D, Bejarano F C, Morgan T, Gower-Winter S, Ozambela M and Levenson C W 2012 Magn. Reson. Med. 67 1159
[3] Schepkin V D 2016 NMR Biomedicine 29 175
[4] Nagel A M, Umathum R, Rosler M B, Ladd M E, Litvak I, Gor'kov P L, Brey W W and Schepkin V D 2016 NMR Biomedicine 29 759
[5] Shemesh N, Rosenberg J T, Dumez J N, Muniz J A, Grant S C and Frydman L 2014 Nat. Commun. 5 4958
[6] Kotani H, Kawaguchi H, Shimoaka T, Iwasaka M, Ueno S, Ozawa H, Nakamura K and Hoshi K 2002 J. Bone Miner. Res. 17 1814
[7] Schiffer I B, Schreiber W G, Graf R, Schreiber E M, Jung D, Rose D M, Hehn M, Gebhard S, Sagemuller J, Spiess H W, Oesch F, Thelen M and Hengstler J G 2003 Bioelectromagnetics 24 241
[8] Nakahara T, Yaguchi H, Yoshida M and Miyakoshi J 2002 Radiology 224 817
[9] Zhao G P, Chen S P, Zhao Y, Zhu L Y, Huang P, Bao L Z, Wang J, Wang L, Wu L J, Wu Y J and Xu A 2010 Plasma Sci. Technol. 12 123
[10] Qian A R, Hu L F, Gao X, Zhang W, Di S M, Tian Z C, Yang P F, Yin D C, Weng Y Y and Shang P 2009 Bioelectromagnetics 30 545
[11] Pan H and Liu X 2004 Bioelectromagnetics 25 84
[12] Pan H 1996 Magn. Reso. Imaging 14 673
[13] Zhao G P, Chen S P, Wang L, Zhao Y, Wang J, Wang X F, Zhang W W, Wu R Q, Wu L J, Wu Y J and Xu A 2011 Bioelectromagnetics 32 94
[14] Eguchi Y, Ogiue-Ikeda M and Ueno S 2003 Neurosci. Lett. 351 130
[15] Denegre J M, Valles J M, Lin K, Jordan W B and Mowry K L 1998 P. Natl. Acad. Sci. USA 95 14729
[16] Zhang L, Hou Y B, Li Z Y, Ji X M, Wang Z, Wang H Z, Tian X F, Yu F Z, Yang Z Y, Pi L, Mitchison T J, Lu Q Y and Zhang X 2017 Elife 6 e22911
[17] Tian X F and Zhang X 2018 Acta Phys. Sin. 66 148701(in Chinese)
[18] Lu G, Liu M L, Li L Y and Ye C H 2002 Chin. Phys. Lett. 19 1385
[19] Qian A R, Gao X, Zhang W, Li J B, Wang Y, Di S M, Hu L F and Shang P 2013 Plos One 8
[20] Wang D M, Wang Z, Zhang L, Li Z Y, Tian X F, Fang J, Lu Q Y and Zhang X 2018 Bioelectromagnetics
[21] Higashi T, Yamagishi A, Takeuchi T, Kawaguchi N, Sagawa S, Onishi S and Date M 1993 Blood 82 1328
[22] Higashi T, Sagawa S, Ashida N and Takeuchi T 1996 Bioelectromagnetics 17 335
[23] Emura R, Ashida N, Higashi T and Takeuchi T 2001 Bioelectromagnetics 22 60
[24] Emura R, Takeuchi T, Nakaoka Y and Higashi T 2003 Bioelectromagnetics 24 347
[25] Jung I, Powers T R, Valles J M and Jr 2014 Biophys. J. 106 106
[26] Guevorkian K and Valles J M 2006 P. Natl. Acad. Sci. USA 103 13051
[27] Budinger T F, Bird M D, Frydman L, Long J R, Mareci T H, Rooney W D, Rosen B, Schenck J F, Schepkin V D, Sherry A D, Sodickson D K, Springer C S, Thulborn K R, Ugurbil K and Wald L L 2016 Magn. Reson. Mater. Phys. 29 617
[28] Budinger T F and Bird M D 2018 Neuroimage 168 509
[29] Pais-Roldan P, Singh A P, Schulz H and Yu X 2016 Sci. Rep-Uk 6 24151
[30] Luo Y, Ji X, Liu J, Li Z, Wang W, Chen W, Wang J, Liu Q and Zhang X 2016 Bioelectrochemistry 109 31
[31] Strelczyk D, Eichhorn M E, Luedemann S, Brix G, Dellian M, Berghaus A and Strieth S 2009 Cancer Biology & Therapy 8 1756
[32] Zhang L, Wang J H, Wang H L, Wang W C, Li Z Y, Liu J J, Yang X X, Ji X M, Luo Y, Hu C, Hou Y B, He Q Q, Fang J, Wang J F, Liu Q S, Li G H, Lu Q Y and Zhang X 2016 Oncotarget 7 41527
[33] Zhang L, Ji X M, Yang X X and Zhang X 2017 Oncotarget 8 13126
[34] Sun Y L, Chen Z H, Chen X H, Yin C, Li D J, Ma X L, Zhao F, Zhang G, Shang P and Qian A R 2015 IEEE T. Bio-Med. Eng. 62 900
[35] Herranz R, Anken R, Boonstra J, Braun M, Christianen P C, de Geest M, Hauslage J, Hilbig R, Hill R J, Lebert M, Medina F J, Vagt N, Ullrich O, van Loon J J and Hemmersbach R 2013 Astrobiology 13 1
[36] Hammer B E, Kidder L S, Williams P C and Xu W W 2009 Microgravity Sci. Tec. 21 311
[37] Tsuji Y, Nakagawa M and Suzuki Y 1996 Ind. Health 34 347
[1] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[2] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[3] Effect of Raman-pulse duration related to the magnetic field gradient in high-precision atom gravimeters
Yuan Cheng(程源), Yu-Jie Tan(谈玉杰), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), Cheng-Gang Shao(邵成刚), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2018, 27(3): 030303.
[4] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[5] Stochastic responses of tumor—immune system with periodic treatment
Dong-Xi Li(李东喜), Ying Li(李颖). Chin. Phys. B, 2017, 26(9): 090203.
[6] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
[7] In-situ measurement of magnetic field gradient in a magnetic shield by a spin-exchange relaxation-free magnetometer
Fang Jian-Cheng (房建成), Wang Tao (王涛), Zhang Hong (张红), Li Yang (李阳), Cai Hong-Wei (蔡洪炜). Chin. Phys. B, 2015, 24(6): 060702.
[8] Effects of Lévy noise and immune delay on the extinction behavior in a tumor growth model
Hao Meng-Li (郝孟丽), Xu Wei (徐伟), Gu Xu-Dong (谷旭东), Qi Lu-Yuan (戚鲁媛). Chin. Phys. B, 2014, 23(9): 090501.
[9] A progressive processing method for breast cancer detection via UWB based on an MRI-derived model
Xiao Xia (肖夏), Song Hang (宋航), Wang Zong-Jie (王宗杰), Wang Liang (王梁). Chin. Phys. B, 2014, 23(7): 074101.
[10] Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms
Jiang Li-Li (蒋莉莉), Luo Xiao-Qin (罗晓琴), Wu Dan (吴丹), Zhu Shi-Qun (朱士群). Chin. Phys. B, 2012, 21(9): 090503.
[11] Stabilizing effect of ion pressure gradient on magnetic curvature-driven drift modes located at rational surface of tokamak plasma
Wang Ai-Ke (王爱科). Chin. Phys. B, 2005, 14(8): 1604-1607.
No Suggested Reading articles found!