Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 103301    DOI: 10.1088/1674-1056/acb75d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence: QM/MM study

Qun Zhang(张群), Xiaofei Wang(王晓菲), Zhimin Wu(吴智敏), Xiaofang Li(李小芳), Kai Zhang(张凯), Yuzhi Song(宋玉志), Jianzhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Lili Lin(蔺丽丽)
Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
Abstract  Aggregation-induced thermally activated delayed fluorescence (TADF) phenomena have attracted extensive attention recently. In this paper, several theoretical models including monomer, dimer, and complex are used for the explanation of the luminescent properties of ($R$)-5-(9H-carbazol-9-yl)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)isoindoline-1,3-dione (($R$)-ImNCz), which was recently reported [$Chemical Engineering Journal$ 418 129167 (2021)]. The polarizable continuum model (PCM) and the combined quantum mechanics and molecular mechanics (QM/MM) method are adopted in simulation of the property of the molecule in the gas phase, solvated in acetonitrile and in aggregation states. It is found that large spin--orbit coupling (SOC) constants and a smaller energy gap between the first singlet excited state and the first triplet excited state ($\Delta E_{\rm st}$) in prism-like single crystals (SC$_{\rm p}$-form) are responsible for the TADF of ($R$)-lmNCz, while no TADF is found in block-like single crystals (SC$_{\rm b}$-form) with a larger $\Delta E_{\rm st}$. The multiple ultralong phosphorescence (UOP) peaks in the spectrum are of complex origins, and they are related not only to ImNCz but also to a minor amount of impurities (ImNBd) in the crystal prepared in the laboratory. The dimer has similar phosphorescence emission wavelengths to the ($R$)-lmNCz-SC$_{\rm p}$ monomers. The complex composed of ($R$)-lmNCz and ($R$)-lmNBd contributes to the phosphorescent emission peak at about 600 nm, and the phosphorescent emission peak at about 650 nm is generated by ($R$)-lmNBd. This indicates that the impurity could also contribute to emission in molecular crystals. The present calculations clarify the relationship between the molecular aggregation and the light-emitting properties of the TADF emitters and will therefore be helpful for the design of potentially more useful TADF emitters.
Keywords:  organic light-emitting diodes      thermally activated delayed fluorescence      ultralong organic phosphorescence      aggregation mode  
Received:  01 October 2022      Revised:  22 January 2023      Accepted manuscript online:  31 January 2023
PACS:  33.50.-j (Fluorescence and phosphorescence; radiationless transitions, quenching (intersystem crossing, internal conversion))  
  33.50.Dq (Fluorescence and phosphorescence spectra)  
  33.50.Hv (Radiationless transitions, quenching)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974216, 11874242, 21933002 and 11904210) and Shandong Provincial Natural Science Foundation, China (Grant No. ZR2019MA056). The authors acknowledge the support of the Taishan Scholar Project of Shandong Province and the project funded by China Postdoctoral Science Foundation (Grant No. 2018M642689).
Corresponding Authors:  Chuan-Kui Wang, Lili Lin     E-mail:  ckwang@sdnu.edu.cn;linll@sdnu.edu.cn

Cite this article: 

Qun Zhang(张群), Xiaofei Wang(王晓菲), Zhimin Wu(吴智敏), Xiaofang Li(李小芳), Kai Zhang(张凯), Yuzhi Song(宋玉志), Jianzhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Lili Lin(蔺丽丽) Effect of aggregation on thermally activated delayed fluorescence and ultralong organic phosphorescence: QM/MM study 2023 Chin. Phys. B 32 103301

[1] Tang C W and Vanslyke S A 1987 Appl. Phys. Lett. 51 913
[2] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B and Leo K 2009 Nature 459 234
[3] Yoshida K, Masui K, Nakanotani H and Adachi C 2016 Org. Electron. 31 191
[4] Guo D, Xu Z, Yang D, Ma D, Tang B and Vadim A 2020 Nanoscale 12 2648
[5] Pope M 1968 Mol. Cryst. 4 183
[6] Zhang H, Zhang B, Zhang Y, Xu Z, Wu H, Yin P A, Wang Z, Zhao Z, Ma D and Tang B Z 2020 Adv. Funct. Mater. 30 2002323
[7] Li F Y, Li M Z, Fan J Z, Song Y Z, Wang C K and Lin L L 2020 J. Phys. Chem. A 124 7526
[8] Wang Y, Peng Q, Ou Q, Lin S Y and Shuai Z G 2020 J. Mater. Chem. A 8 18721
[9] Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E and Forrest S R 1998 Nature 395 151
[10] Jiang G Y, Li F Y, Fan J Z, Song Y Z, Wang C K and Lin L L 2020 J. Mater. Chem. C 8 98
[11] Ni F, Li N Q, Zhan L S and Yang C L 2020 Adv. Optical Mater. 8 1902187
[12] Zhao M L, Zhang H H, Gu C and Ma Y G 2020 J. Mater. Chem. C 8 5310
[13] Liu S S, Lu J J, Lu Q, Fan J Z, Lin L L, Wang C K and Song Y Z 2019 Front. Chem. 7 932
[14] Ma H L, Lv A Q, Fu L S, Wang S, An Z F, Shi H F and Huang W 2019 Ann. Phys. 7 531
[15] Sarma M and Wong K T 2018 ACS Appl. Mater. Inter. 10 19279
[16] Tao Y, Yuan K, Chen T, Xu P, Li H H, Chen R F, Zheng C, Zhang L and Huang W 2014 Adv. Mater. 26 7931
[17] Hsieh C M, Wu T L, Jayakumar J, Wang Y C, Ko C L, Hung W Y, Lin T C, Wu H H, Lin K H, Lin C H, Hsieh S C and Cheng C H 2020 ACS Appl. Mater. Inter. 12 23199
[18] Zhong D K, Yu Y, Song D D, Yang X L, Zhang Y D, Chen X, Zhou G J and Wu Z X 2019 ACS Appl. Mater. Inter. 11 27112
[19] Olivier Y, Sancho-Garcia J C, Muccioli L, D'Avino G and Beljonne D 2018 J. Phys. Chem. Lett. 9 6149
[20] Ye J T, Wang L, Wang H Q, Xie H M and Qiu Y Q 2019 Org. Electron. 70 193
[21] Tsai C C, Huang W C, Chih H Y, Hsh Y C, Liao C W, Lin C H, Kang Y X, Chang C H, Chang Y J and Lu C W 2018 Org. Electron. 63 166
[22] dos Santos P L, Etherington M K and Monkman A P 2018 J. Mater. Chem. C 6 4842
[23] Liu J J, Hu T P, Li Z Y, Wei X F, Hu X X, Gao H L, Liu G H, Yi Y P, Yamada-Takamura Y, Lee C S, Wang P and Wang Y 2019 J. Phys. Chem. Lett. 10 1888
[24] Sarkar S K, Pegu M, Behera S K, Narra S K and Thilagar P 2019 Chem. Asian J. 14 4588
[25] Zheng K L, Ni F, Chen Z X, Zhong C and Yang C L 2020 Angew. Chem. Int. Ed. 59 9972
[26] Yang W, Yang Y Y, Cao X S, Liu Y, Chen Z X, Huang Z Y, Gong S L and Yang C L 2021 Chem. Eng. J. 415 128909
[27] Zhu J L, Liao Q, Huang H, Fu L Y, Liu M H, Gu C L and Fu H B 2022 Cell Rep. Phys. Sci. 3 1
[28] Li J A, Song Z C, Chen Y T, Xu C, Li S F, Peng Q E, Shi G, Liu C, Luo S L, Sun F Q, Zhao Z J, Chi Z G, Zhang Y and Xu B J 2021 Chem. Eng. J. 418 129167
[29] Li M Z, Li F Y, Zhang Q, Zhang K, Song Y Z, Fan J Z, Wang C K and Lin L L 2021 Chin. Phys. B 30 123302
[30] Zhang K, Zhang X, Fan J Z, Song Y Z, Fan J Z, Wang C K and Lin L L 2022 J. Phys. Chem. Lett. 13 4711
[31] Chen C J, Chi Z G, Chong K C, Batsanov A S, Yang Z, Mao Z, Yang Z Y and Liu B 2021 Nat. Mater. 20 175
[32] Fan J Z, Lin L L and Wang C K 2016 Chem. Phys. Lett. 652 16
[33] Fan D, Yi Y P, Li Z D, Liu W J, Peng Q and Shuai Z G 2015 J. Phys. Chem. A 119 5233
[34] Chung L W, Sameera W M C, Ramozzi R, Page A, Hatanaka M P, Petrova G V, Harris T, Li X, Ke Z F, Liu H B, Ding L N and Morokuma K 2015 Chem. Rev. 115 5678
[35] Ruiz-Barragan S, Morokuma K and Blancafort L 2015 J. Chem. Theory Comput. 11 1585
[36] Fan J Z, Zhang Y C, Zhou Y, Lin L and Wang C K 2018 J. Phys. Chem. C 122 2358
[37] Fan J Z, Zhang Y C, Zhang K, Liu J, Jiang G Y, Lin L L and Wang C K 2019 Org. Electron. 71 113
[38] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[39] Zhang K, Zhang Q, Li M Z, Song Y Z, Fan J Z, Wang C K and Lin L L 2022 J. Phys. Chem. C 126 2437
[40] Zhang K, Wang X F, Zhang Q, Wu Z M, Li X F, Mu Q F, Fan J Z, Wang C K and Lin L L 2022 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 278 121328
[41] Lu T and Chen Q 2022 J. Comput. Chem. 43 539
[42] Miehlich B, Savin A, Stoll H and Preuss H 1989 Chem. Phys. Lett. 157 200
[43] Adamo C and Barone V 1999 J. Chem. Phys. 110 6158
[44] Boese A D and Martin J M 2004 J. Chem. Phys. 121 3405
[45] Zhao Y and Truhlar D G 2007 Theor. Chem. Acc. 120 215
[46] Chai J D and Head-Gordon M 2008 Phys. Chem. Chem. Phys. 10 6615
[47] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 16, Rev. A. 03, Inc., Wallingford, C T, 2016
[48] Gao Y J, Chen W K, Zhang T T, Fang W H and Cui G 2018 J. Phys. Chem. C 122 27608
[49] Fan J Z, Zhang Y C, Zhang K, Lin L L and Wang C K 2019 J. Lumin. 209 372
[50] Dalton, a molecular electronic structure program, release v2020.1. DOI: http://daltonprogram.org
[51] Niu Y L, Li W Q, Peng Q, Geng H, Yi Y P, Wang L J, Nan G J, Wang D and Shuai Z G 2018 Mol. Phys. 116 1078
[52] Lv A Q, Yu Z, Mao Y F, Zheng X Y, Shi W, Shi H F, Yao W, Ma H L and An Z F 2021 Dyes Pigments 193 109520
[53] Shuai Z G, Wang D, Peng Q and Geng H 2014 Acc. Chem. Res. 47 3301
[54] Peng Q, Shi Q H, Niu Y L, Yi Y P, Sun S R, Li W Q and Shuai Z G 2016 J. Mater. Chem. C 4 6829
[1] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[2] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[3] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[4] Enhancement of Förster energy transfer from thermally activated delayed fluorophores layer to ultrathin phosphor layer for high color stability in non-doped hybrid white organic light-emitting devices
Zijun Wang(王子君), Juan Zhao(赵娟), Chang Zhou(周畅), Yige Qi(祁一歌), Junsheng Yu(于军胜). Chin. Phys. B, 2017, 26(4): 047302.
[5] Luminescent properties of thermally activated delayed fluorescence molecule with intramolecular π-π interaction betweendonor and acceptor
Lei Cai(蔡磊), Jianzhong Fan(范建忠), Xiangpeng Kong(孔祥朋), Lili Lin(蔺丽丽), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(11): 118503.
[6] Enhancement of electroluminescent properties of organic optoelectronic integrated device by doping phosphorescent dye
Shu-ying Lei(雷疏影), Jian Zhong(钟建), Dian-li Zhou(周殿力), Fang-yun Zhu(朱方云), Chao-xu Deng(邓朝旭). Chin. Phys. B, 2017, 26(11): 117001.
[7] High color rendering index white organic light-emitting diode using levofloxacin as blue emitter
Miao Yan-Qin (苗艳勤), Gao Zhi-Xiang (高志翔), Zhang Ai-Qin (张爱琴), Li Yuan-Hao (李源浩), Wang Hua (王华), Jia Hu-Sheng (贾虎生), Liu Xu-Guang (刘旭光), Tsuboi Taiju. Chin. Phys. B, 2015, 24(5): 057802.
[8] Pure blue and white light electroluminescence in a multilayer organic light-emitting diode using a new blue emitter
Wei Na (魏娜), Guo Kun-Ping (郭坤平), Zhou Peng-Chao (周朋超), Yu Jian-Ning (于建宁), Wei Bin (魏斌), Zhang Jian-Hua (张建华). Chin. Phys. B, 2014, 23(7): 077802.
[9] Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer
Bi Wen-Tao (毕文涛), Wu Xiao-Ming (吴晓明), Hua Yu-Lin (华玉林), Sun Jin-E (孙金娥), Xiao Zhi-Hui (肖志慧), Wang Li (王丽), Yin Shou-Gen (印寿根). Chin. Phys. B, 2014, 23(1): 017803.
[10] Improved light extraction of organic light emitting diodes with a nanopillar pattering structure
Gao Zhi-Xiang (高志翔), Wang Hua (王华), Hao Yu-Ying (郝玉英), Miao Yan-Qin (苗艳勤), Xu Bing-She (许并社). Chin. Phys. B, 2013, 22(11): 116801.
[11] White organic light-emitting diodes based on combined electromer and monomer emission in doubly-doped polymers
Meng Ling-Chuan (孟令川), Lou Zhi-Dong (娄志东), Yang Sheng-Yi (杨盛谊), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Li Yun-Bai (李云白 ). Chin. Phys. B, 2012, 21(8): 088504.
[12] Improved performance of organic light-emitting diodes with dual electron transporting layers
Jiao Zhi-Qiang(焦志强), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Mu Xue(穆雪), Bi Wen-Tao(毕文涛), Bai Juan-Juan(白娟娟), and Yin Shou-Gen(印寿根) . Chin. Phys. B, 2012, 21(6): 067202.
[13] Highly efficient blue fluorescent OLEDs with doped double emitting layers based on p–n heterojunctions
Su Yue-Ju(苏跃举), Wu Xiao-Ming(吴晓明), Hua Yu-Lin(华玉林), Shen Li-Ying(申利莹), Jiao Zhi-Qiang(焦志强), Dong Mu-Sen(董木森), and Yin Shou-Gen(印寿根). Chin. Phys. B, 2012, 21(5): 058503.
[14] Electric dipolar interaction assisted growth of single crystalline organic thin films
Cai Jin-Ming(蔡金明), Zhang Yu-Yang(张余洋), Hu Hao(胡昊), Bao Li-Hong(鲍丽宏), Pan Li-Da(潘理达), Tang Wei(唐卫), Li Guo(李果), Du Shi-Xuan(杜世萱), Shen Jian(沈健), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(6): 067101.
[15] Dependence of charge trapping of fluorescent and phosphorescent dopants in organic light-emitting diodes on the dye species and current density
Wei Bin(魏斌), Liao Ying-Jie (廖英杰), Liu Ji-Zhong (刘纪忠), Lu Lin(路林), Cao Jin(曹进), Wang Jun (王军), and Zhang Jian-Hua (张建华). Chin. Phys. B, 2010, 19(3): 037105.
No Suggested Reading articles found!