|
|
All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn |
Antônio Canal Neto, Francisco E. Jorge†, and Henrique R. C. da Cruz |
Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil |
|
|
Abstract Segmented all-electron basis set of triple zeta valence quality plus polarization functions (TZP) for the elements of the fifth row to be used together with the zero-order regular approximation (ZORA) is carefully constructed. To correctly describe electrons distant from atomic nuclei, the basis set is augmented with diffuse functions giving rise to a set designated as ATZP-ZORA. At the ZORA-B3LYP theoretical level, these sets are used to calculate the ionization energy and mean dipole polarizability of some atoms, bond length, dissociation energy, and harmonic vibrational frequency of diatomic molecules. Then, these results are compared with the theoretical and experimental data found in the literature. Even considering that our sets are relatively compact, they are sufficiently accurate and reliable to perform property calculations involving simultaneously electrons from the inner shell and outer shell. The performances of the ZORA and second-order Douglas-Kroll-Hess Hamiltonians are evaluated and the results are also discussed.
|
Received: 12 December 2022
Revised: 13 February 2023
Accepted manuscript online: 23 February 2023
|
PACS:
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
31.15.aj
|
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
|
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.eg
|
(Exchange-correlation functionals (in current density functional theory))
|
|
Fund: Project supported by the Conselho Nacional de Desenvolvimento Científico Tecnológico (Brazilian Agency). |
Corresponding Authors:
Francisco E. Jorge
E-mail: francisco.jorge@ufes.br
|
Cite this article:
Antônio Canal Neto, Francisco E. Jorge, and Henrique R. C. da Cruz All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn 2023 Chin. Phys. B 32 093101
|
[1] Saue T 2011 ChemPhysChem 12 3077 [2] Dolg M and Cao X 2012 Chem. Rev. 112 403 [3] Güell M, Luis J M, Solá M and Swart M 2008 J. Phys. Chem. A 112 6384 [4] Vyboishchikov S F, Sierraalta A and Frenking G 1997 J. Comput. Chem. 18 416 [5] Cirera J and Ruiz E 2008 C R Chim. 11 1227 [6] Van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597 [7] Douglas M and Kroll N M 1974 Ann. Phys. 82 89 [8] Hess B A 1985 Phys. Rev. A 32 756 [9] Hess B A 1986 Phys. Rev. A 33 3742 [10] Jorge F E, Canal Neto A, Camiletti G G and Machado S F 2009 J. Chem. Phys. 130 064108 [11] Campos C T and Jorge F E 2013 Mol. Phys. 111 167 [12] Martins L S C, Jorge F E and Machado S F 2015 Mol. Phys. 113 3578 [13] Blagojevic V, Blagojevic V A, Koyanagi G K and Bohme D K 2022 J. Am. Soc. Mass Spectrom. 33 1419 [14] Zhang L, Wang L L and Fang D C 2022 ACS Omega 7 6133 [15] Aliyarova I S, Tupikina E Yu, Ivanov D M and Kukushkin V Yu 2022 Inorg. Chem. 61 2558 [16] Pelczarski D, Korolevych O, Gierczyk B, Zalas M, Makowska-Janusik M and Stampor W 2022 Materials 15 2278 [17] De Almeida C A, Pinto L P N M, dos Santos H F and Paschoal D F S 2021 J. Mol. Model. 27 322 [18] Porto C M, Santana L C and Morgon N H 2020 Theor. Chem. Acc. 139 121 [19] Orenha R P, Caramori G F, Misturini A and Galembeck S E 2019 J. Mol. Model. 25 11 [20] Jorge F E and de Macedo L G M 2016 Chin. Phys. B 25 123102 [21] Jorge F E and Venâncio J R C 2018 Chin. Phys. B 27 063102 [22] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2005 J. Phys. Chem. A 109 6575 [23] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2004 J. Phys. Chem. A 108 2851 [24] Roos B O, Veryazov V and Widmark P O 2004 Theor. Chem. Acc. 111 345 [25] Nakajima T and Hirao K 2002 J. Chem. Phys. 116 8270 [26] Watanabe Y, Tatewaki H, Koga T and Matsuoka O 2006 J. Comput. Chem. 27 48 [27] Faegri K 2001 Theor. Chem. Acc. 105 252 [28] Pantazis D A, Chen X Y, Landis C R and Neese F 2008 J. Chem. Theory Comput. 4 908 [29] Centoducatte R, de Oliveira A Z, Jorge F E and Camiletti G G 2022 Comput. Theor. Chem. 1207 113511 [30] Canal Neto A, Ferreira I B, Jorge F E and de Oliveira A Z 2021 Chem. Phys. Lett. 771 138548 [31] Jorge F E and Canal Neto A 2020 Theor. Chem. Acc. 139 76 [32] Neese F 2018 WIRES-Comp. Mol. Sci. 8 e1327 [33] Campos C T, de Oliveira A Z, Ferreira I B, Jorge F E, Martins L S C 2017 Chem. Phys. Lett. 675 1 [34] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48 [35] Kramida A, Ralchenko Yu and Reader J 2021 NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), National Institute of Standards and Technology, Gaithersburg, MD [36] Franzke Y J, Spiske L, Pollak P and Weigend F 2020 J. Chem. Theory Comput. 16 5658 [37] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200 [38] Lide D R (ed.) 2003-2004 CRC Handbook of Chemistry and Physics, 84th edn. (Boca Raton, Florida: CRC Press) [39] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold) [40] Allouche A R, Aubert-Frécon M, Nicolas G and Spiegelmann F 1995 Chem. Phys. 200 63 [41] Froben F W, Schulze W and Kloss U 1983 Chem. Phys. Lett. 99 500 [42] Balasubramanian K 1997 Relativistic Effects in Chemistry, Part B (New York: Wiley) [43] Roos B O and Malmqvist P A 2004 Phys. Chem. Chem. Phys. 6 2919 [44] Sebetci A 2006 Chem. Phys. 331 9 [45] Puzzarini C and Peterson K A 2005 Chem. Phys. 311 177 [46] Metz B, Schweizer1 M, Stoll H, Dolg M and Liu W 2000 Theor. Chem. Acc. 104 22 [47] Van Lenthe E, Snijders J G and Baerends E J 1996 J. Chem. Phys. 105 6505 [48] Visscher L and Dyall K G 1996 J. Chem. Phys. 104 9040 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|