Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 093101    DOI: 10.1088/1674-1056/acbe34
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn

Antônio Canal Neto, Francisco E. Jorge, and Henrique R. C. da Cruz
Departamento de Física, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil
Abstract  Segmented all-electron basis set of triple zeta valence quality plus polarization functions (TZP) for the elements of the fifth row to be used together with the zero-order regular approximation (ZORA) is carefully constructed. To correctly describe electrons distant from atomic nuclei, the basis set is augmented with diffuse functions giving rise to a set designated as ATZP-ZORA. At the ZORA-B3LYP theoretical level, these sets are used to calculate the ionization energy and mean dipole polarizability of some atoms, bond length, dissociation energy, and harmonic vibrational frequency of diatomic molecules. Then, these results are compared with the theoretical and experimental data found in the literature. Even considering that our sets are relatively compact, they are sufficiently accurate and reliable to perform property calculations involving simultaneously electrons from the inner shell and outer shell. The performances of the ZORA and second-order Douglas-Kroll-Hess Hamiltonians are evaluated and the results are also discussed.
Keywords:  TZP-ZORA and ATZP-ZORA basis sets      ZORA-B3LYP method      Cs-La and Hf-Rn elements      atomic and molecular properties  
Received:  12 December 2022      Revised:  13 February 2023      Accepted manuscript online:  23 February 2023
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
  31.15.eg (Exchange-correlation functionals (in current density functional theory))  
Fund: Project supported by the Conselho Nacional de Desenvolvimento Científico Tecnológico (Brazilian Agency).
Corresponding Authors:  Francisco E. Jorge     E-mail:  francisco.jorge@ufes.br

Cite this article: 

Antônio Canal Neto, Francisco E. Jorge, and Henrique R. C. da Cruz All-electron ZORA triple zeta basis sets for the elements Cs-La and Hf-Rn 2023 Chin. Phys. B 32 093101

[1] Saue T 2011 ChemPhysChem 12 3077
[2] Dolg M and Cao X 2012 Chem. Rev. 112 403
[3] Güell M, Luis J M, Solá M and Swart M 2008 J. Phys. Chem. A 112 6384
[4] Vyboishchikov S F, Sierraalta A and Frenking G 1997 J. Comput. Chem. 18 416
[5] Cirera J and Ruiz E 2008 C R Chim. 11 1227
[6] Van Lenthe E, Baerends E J and Snijders J G 1993 J. Chem. Phys. 99 4597
[7] Douglas M and Kroll N M 1974 Ann. Phys. 82 89
[8] Hess B A 1985 Phys. Rev. A 32 756
[9] Hess B A 1986 Phys. Rev. A 33 3742
[10] Jorge F E, Canal Neto A, Camiletti G G and Machado S F 2009 J. Chem. Phys. 130 064108
[11] Campos C T and Jorge F E 2013 Mol. Phys. 111 167
[12] Martins L S C, Jorge F E and Machado S F 2015 Mol. Phys. 113 3578
[13] Blagojevic V, Blagojevic V A, Koyanagi G K and Bohme D K 2022 J. Am. Soc. Mass Spectrom. 33 1419
[14] Zhang L, Wang L L and Fang D C 2022 ACS Omega 7 6133
[15] Aliyarova I S, Tupikina E Yu, Ivanov D M and Kukushkin V Yu 2022 Inorg. Chem. 61 2558
[16] Pelczarski D, Korolevych O, Gierczyk B, Zalas M, Makowska-Janusik M and Stampor W 2022 Materials 15 2278
[17] De Almeida C A, Pinto L P N M, dos Santos H F and Paschoal D F S 2021 J. Mol. Model. 27 322
[18] Porto C M, Santana L C and Morgon N H 2020 Theor. Chem. Acc. 139 121
[19] Orenha R P, Caramori G F, Misturini A and Galembeck S E 2019 J. Mol. Model. 25 11
[20] Jorge F E and de Macedo L G M 2016 Chin. Phys. B 25 123102
[21] Jorge F E and Venâncio J R C 2018 Chin. Phys. B 27 063102
[22] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2005 J. Phys. Chem. A 109 6575
[23] Roos B O, Lindh R, Malmqvist P Å, Veryazov V and Widmark P O 2004 J. Phys. Chem. A 108 2851
[24] Roos B O, Veryazov V and Widmark P O 2004 Theor. Chem. Acc. 111 345
[25] Nakajima T and Hirao K 2002 J. Chem. Phys. 116 8270
[26] Watanabe Y, Tatewaki H, Koga T and Matsuoka O 2006 J. Comput. Chem. 27 48
[27] Faegri K 2001 Theor. Chem. Acc. 105 252
[28] Pantazis D A, Chen X Y, Landis C R and Neese F 2008 J. Chem. Theory Comput. 4 908
[29] Centoducatte R, de Oliveira A Z, Jorge F E and Camiletti G G 2022 Comput. Theor. Chem. 1207 113511
[30] Canal Neto A, Ferreira I B, Jorge F E and de Oliveira A Z 2021 Chem. Phys. Lett. 771 138548
[31] Jorge F E and Canal Neto A 2020 Theor. Chem. Acc. 139 76
[32] Neese F 2018 WIRES-Comp. Mol. Sci. 8 e1327
[33] Campos C T, de Oliveira A Z, Ferreira I B, Jorge F E, Martins L S C 2017 Chem. Phys. Lett. 675 1
[34] De Jong W A, Harrison R J and Dixon D A 2001 J. Chem. Phys. 114 48
[35] Kramida A, Ralchenko Yu and Reader J 2021 NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), National Institute of Standards and Technology, Gaithersburg, MD
[36] Franzke Y J, Spiske L, Pollak P and Weigend F 2020 J. Chem. Theory Comput. 16 5658
[37] Schwerdtfeger P and Nagle J K 2019 Mol. Phys. 117 1200
[38] Lide D R (ed.) 2003-2004 CRC Handbook of Chemistry and Physics, 84th edn. (Boca Raton, Florida: CRC Press)
[39] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (New York: Van Nostrand Reinhold)
[40] Allouche A R, Aubert-Frécon M, Nicolas G and Spiegelmann F 1995 Chem. Phys. 200 63
[41] Froben F W, Schulze W and Kloss U 1983 Chem. Phys. Lett. 99 500
[42] Balasubramanian K 1997 Relativistic Effects in Chemistry, Part B (New York: Wiley)
[43] Roos B O and Malmqvist P A 2004 Phys. Chem. Chem. Phys. 6 2919
[44] Sebetci A 2006 Chem. Phys. 331 9
[45] Puzzarini C and Peterson K A 2005 Chem. Phys. 311 177
[46] Metz B, Schweizer1 M, Stoll H, Dolg M and Liu W 2000 Theor. Chem. Acc. 104 22
[47] Van Lenthe E, Snijders J G and Baerends E J 1996 J. Chem. Phys. 105 6505
[48] Visscher L and Dyall K G 1996 J. Chem. Phys. 104 9040
[1] Corrigendum to “Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity”
Jing Wang(王静), Xiankai Jiang(姜先凯), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), and Haiping Fang(方海平). Chin. Phys. B, 2023, 32(6): 069901.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
[5] Peptide backbone-copper ring structure: A molecular insight into copper-induced amyloid toxicity
Jing Wang(王静), Hua Li(李华), Xiankai Jiang(姜先凯), Bin Wu(吴斌), Jun Guo(郭俊), Xiurong Su(苏秀榕), Xingfei Zhou(周星飞), Yu Wang(王宇), Geng Wang(王耿), Heping Geng(耿和平), Zheng Jiang(姜政), Fang Huang(黄方), Gang Chen(陈刚), Chunlei Wang(王春雷), Haiping Fang(方海平), and Chenqi Xu(许琛琦). Chin. Phys. B, 2022, 31(10): 108702.
[6] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[7] Electronic structures and topological properties of TeSe2 monolayers
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹). Chin. Phys. B, 2021, 30(11): 117304.
[8] Tuning charge and orbital ordering in DyNiO3 by biaxial strain
Litong Jiang(姜丽桐), Kuijuan Jin(金奎娟), Wenning Ren(任文宁), and Guozhen Yang(杨国桢). Chin. Phys. B, 2021, 30(11): 117106.
[9] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[10] Electronic shell study of prolate Lin(n =15-17) clusters: Magnetic superatomic molecules
Lijuan Yan(闫丽娟), Jianmei Shao(邵健梅), and Yongqiang Li(李永强). Chin. Phys. B, 2020, 29(12): 125101.
[11] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[12] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[13] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[14] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[15] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
No Suggested Reading articles found!