ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Structure and material study of dielectric laser accelerators based on the inverse Cherenkov effect |
Bin Sun(孙斌)1,2,3,†, Yang-Fan He(何阳帆)2,3, Ruo-Yun Luo(罗若云)4, Tai-Yang Zhang(章太阳)5, Qiang Zhou(周强)4,6, Shao-Yi Wang(王少义)2,3, Du Wang(王度)7, and Zong-Qing Zhao(赵宗清)2,‡ |
1 Department of Plasma Physics and Fusion Engineering, Key Laboratory of Geospace Environment (Chinese Academy of Sciences), University of Science and Technology of China, Hefei 230026, China; 2 Laser Fusion Research Center, China Academy of Engineering Physics (CAEP), Mianyang 621900, China; 3 The Sciences and Technology on Plasma Physics Laboratory, CAEP, Mianyang 621900, China; 4 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China; 5 Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, 104 South Wright Street, Urbana, IL 61801, USA; 6 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 7 The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China |
|
|
Abstract Dielectric laser accelerators (DLAs) are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients. This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect. The designs utilize conventional processing methods and laser parameters currently in use. We optimize the structural model to enhance the gradient of acceleration and the electron energy gain. To achieve higher acceleration gradients and energy gains, the selection of materials and structures should be based on the initial electron energy. Furthermore, we observed that the variation of the acceleration gradient of the material is different at different initial electron energies. These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.
|
Received: 07 January 2023
Revised: 01 June 2023
Accepted manuscript online: 07 June 2023
|
PACS:
|
41.75.Jv
|
(Laser-driven acceleration?)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.25.-p
|
(Wave optics)
|
|
41.20.-q
|
(Applied classical electromagnetism)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975214). |
Corresponding Authors:
Bin Sun, Zong-Qing Zhao
E-mail: binsun97@mail.ustc.edu.cn;zhaozongqing99@caep.cn
|
Cite this article:
Bin Sun(孙斌), Yang-Fan He(何阳帆), Ruo-Yun Luo(罗若云), Tai-Yang Zhang(章太阳), Qiang Zhou(周强), Shao-Yi Wang(王少义), Du Wang(王度), and Zong-Qing Zhao(赵宗清) Structure and material study of dielectric laser accelerators based on the inverse Cherenkov effect 2023 Chin. Phys. B 32 094101
|
[1] Zhang Y, Fang W C, Huang X X, Tan J H, Wang C, Wang C P and Zhao Z T 2021 Nucl. Sci. Tech. 32 38 [2] Fu G Y, Dang Y L, Liu F L, Wu D, He C Y and Wang N Y 2019 Chin. Phys. B 28 060707 [3] Chen S, Hao J K, Lin L, Zhu F, Feng L W, Wang F, Xie H M, Guo X, Chen M, Quan S W and Liu K X 2018 Chin. Phys. Lett. 35 037401 [4] Yang Z, Huang S, He Y, Lu X, Guo H, Li C, Niu X, Xiong P, Song Y, Wu A, Xie B, You Z, Chu Q, Tan T, Pan F, Lu M, Luo D, Zhang J, Zhang S and Zhan W 2021 Chin. Phys. Lett. 38 092901 [5] Xiao O Z, Fukuda S, Zhou Z S, Zaib U N, Wang S C, Lu Z J, Pei G X, Iqbal M and Dong D 2022 Chin. Phys. B 31 088401 [6] Geng P F, Chen M, An X Y, Liu W Y, Zhu X Z, Li J L, Li B Y and Sheng Z M 2023 Chin. Phys. B 32 044101 [7] Geng P F, Lv W J, Li X L, Tang R A and Xue J K 2018 Chin. Phys. B 27 035201 [8] Deng S and Liu M 2019 Chin. Phys. B 28 044101 [9] Hu Y N, Cheng L H, Yao Z W, Zhang X B, Zhang A X and Xue J K 2020 Chin. Phys. B 29 084103 [10] Naranjo B, Valloni A, Putterman S and Rosenzweig J B 2012 Phys. Rev. Lett. 109 164803 [11] Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G and Byer R L 2013 Nature 503 91 [12] England R J, Noble R J, Bane K, Dowell D H, Ng C K, Spencer J E, Tantawi S, Wu Z, Byer R L, Peralta E, Soong K, Chang C M, Montazeri B, Wolf S J, Cowan B, Dawson J, Gai W, Hommelhoff P, Huang Y C, Jing C, McGuinness C, Palmer R B, Naranjo B, Rosenzweig J, Travish G, Mizrahi A, Schachter L, Sears C, Werner G R and Yoder R B 2014 Rev. Mod. Phys. 86 1337 [13] Leedle K J, Pease Fabian R, Byer R L and Harris J S 2015 Optica 2 158 [14] Wootton K P, Wu Z, Cowan B M, Hanuka A, Makasyuk I V, Peralta E A, Soong K, Byer R L and England Joel R 2016 Opt. Lett. 41 2696 [15] McNeur J, Kozák M, Schönenberger N, Leedle K J, Deng H, Ceballos A, Hoogland H, Ruehl A, Hartl I, Holzwarth R, Solgaard O, Harris J S, Byer R L and Hommelhoff P 2018 Optica 5 687 [16] Yousefi P, Schönenberger N, McNeur J, Kozák M, Niedermayer U and Hommelhoff P 2019 Opt. Lett. 44 1520 [17] Sapra Neil V, Yang Ki Y, Vercruysse D, Leedle Kenneth J, Black Dylan S, England R J, Su L, Trivedi R, Miao Y, Solgaard O, Byer R L and Vuv{c}ković J 2020 Science 367 79 [18] Shiloh R, Illmer J, Chlouba T, Yousefi P, Schönenberger N, Niedermayer U, Mittelbach A and Hommelhoff P 2021 Nature 597 498 [19] Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan J A, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X and Ni X 2021 Light Sci. Appl. 10 235 [20] Chlouba T, Shiloh R, Forsberg P, Hamberg M, Karlsson M, Kozák M and Hommelhoff P 2022 Opt. Express 30 505 [21] Plettner T, Byer R L and Montazeri B 2011 J. Mod. Opt. 58 1518 [22] Breuer J, McNeur J and Hommelhoff P 2014 J. Phys. B. At. Mol. Opt. Phys. 47 234004 [23] Cesar D, Maxson J, Musumeci P, Shen X, England R J and Wootton K P 2018 Nucl. Instrum. Meth. A 909 252 [24] Chen L, Lu X, Li D and Li Y 2018 Chin. Phys. B 27 074101 [25] Fu X W, Wang E, Zhao Y, Liu A, Montgomery E, Gokhale V J, Gorman J J, Jing C, Lau J W and Zhu Y 2020 Sci. Adv. 6 eabc3456 [26] Zheng D, Huang S, Zhu C, Li Z, Zhang Y, Yang D, Tian H, Li J, Yang H and Li J 2022 Nanoscale 14 10477 [27] Plettner T, Lu P P and Byer R L 2006 Phys. Rev. ST Accel. Beams 9 111301 [28] Aimidula A, Bake M A, Wan F, Xie B S, Welsch C P, Xia G, Mete O, Uesaka M, Matsumura Y, Yoshida M and Koyama K 2014 Phys. Plasmas 21 023110 [29] He Y F, Sun B, Ma M J, Li W, He Q Y, Cui Z H, Wang S Y and Zhao Z Q 2022 Nucl. Sci. Tech. 33 120 [30] Kozák M, Beck P, Deng H, McNeur J, Schönenberger N, Gaida C, Stutzki F, Gebhardt M, Limpert J, Ruehl A, Hartl I, Solgaard O, Harris J S, Byer R L and Hommelhoff P 2017 Opt. Express 25 19195 [31] Liu W, Yu Z, Sun L, Liu Y, Jia Q, Xu H and Sun B 2020 Phys. Rev. Appl. 14 014018 [32] Sun L, Liu W, Zhou J, Zhu Y, Yu Z, Liu Y, Jia Q, Sun B and Xu H 2021 New J. Phys. 23 063031 [33] Liu W, Sun L, Yu Z, Liu Y, Jia Q, Sun B and Xu H 2021 Opt. Lett. 46 4398 [34] Sun B, He Y F, Luo R Y, Zhang T Y, Zhou Q, Wang S Y, Zheng J and Zhao Z Q 2023 Nucl. Sci. Tech. 34 23 [35] Malitson I H 1965 J. Opt. Soc. Am. 55 1205 [36] Malitson I H 1962 J. Opt. Soc. Am. 52 1377 [37] Nigara Y 1968 Jpn. J. Appl. Phys. 7 404 [38] Wood D L and Nassau K 1982 Appl. Opt. 21 2978 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|