Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 090308    DOI: 10.1088/1674-1056/acac0a
GENERAL Prev   Next  

Improved quantum (t,n) threshold group signature

Yaodong Zhang(张耀东)1,†, Feng Liu(刘锋)2, and Haixin Zuo(左海新)1
1 College of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China;
2 College of Mathematic and Information Science, Shandong Technology and Business University, Yantai 264005, China
Abstract  Threshold signature is an important branch of the digital signature scheme, which can distribute signature rights and avoid the abuse of signature rights. With the continuous development of quantum computation and quantum information, quantum threshold signatures are gradually becoming more popular. Recently, a quantum (t,n) threshold group signature scheme was analyzed that uses techniques such as quantum-controlled-not operation and quantum teleportation. However, this scheme cannot resist forgery attack and does not conform to the design of a threshold signature in the signing phase. Based on the original scheme, we propose an improved quantum (t,n) threshold signature scheme using quantum (t,n) threshold secret sharing technology. The analysis proves that the improved scheme can resist forgery attack and collusion attack, and it is undeniable. At the same time, this scheme reduces the level of trust in the arbitrator during the signature phase.
Keywords:  quantum (t,n) threshold signature      quantum (t,n) threshold secret sharing      forgery attack      collusion attack  
Received:  11 September 2022      Revised:  13 December 2022      Accepted manuscript online:  16 December 2022
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771294 and 61972235).
Corresponding Authors:  Yaodong Zhang     E-mail:  zhangyd136@163.com

Cite this article: 

Yaodong Zhang(张耀东), Feng Liu(刘锋), and Haixin Zuo(左海新) Improved quantum (t,n) threshold group signature 2023 Chin. Phys. B 32 090308

[1] Desmedt Y and Frankel Y 1991 Annual International Cryptology Conference, August 11-15, 1991, Santa Barbara, California, USA, p. 457-469
[2] Zhao L S and Liu J M 2013 2013 5th International Conference on Intelligent Networking and Collaborative Systems, September 9-11, 2013, Xian, Shaanxi, China, pp. 649-651
[3] Wang Y and Lu D J 2012 2012 International Conference on Computer Science and Electronics Engineering, March 23-25, 2012, Hangzhou, Zhejiang, China, pp. 349-352
[4] Liu D, Wang L J, Wang C and Huo P Y 2017 Proceedings of the 2017 International Conference on Cryptography, March 17-19, 2017, Wuhan, China, pp. 78-80
[5] Shor P W 1994 Proceedings 35th annual symposium on foundations of computer science, November 20-22, 1994, Santa Fe, NM, USA, pp. 124-134
[6] Gottesman D and Chuang I 2001 arXiv: quant-ph/0105032
[7] Zeng G H and Keitel C H 2002 Phys. Rev. A 65 042312
[8] Lee H, Hong C, Kim H, Lim J and Yang H J 2004 Phys. Lett. A 321 295
[9] Xu G B and Zhang K J 2015 Quantum Inf. Process. 14 2577
[10] Zhang K J and Jia H Y 2015 Internaltional Journal of Theoretical Physics 54 582
[11] Kim T, Lee H S and Lee S 2017 Quantum Inf. Process. 16 268
[12] Zheng T, Zhang S B, Chang Y and Yan L L International Conference on Artificial Intelligence and Security, July 17-19, 2020, Hohhot, China, p. 289
[13] Yin H L, Yao F and Chen Z B 2016 Phys. Rev. A 93 032316
[14] Yin H L, Yao F, Liu H, Tang Q J, Wang J, You L X, Zhang W J and Chen S J 2017 Phys. Rev. A 95 032334
[15] Lu Y S, Cao X Y, Weng C X, Gu J, Xie Y M, Zhou M G, Yin H L and Chen Z B 2021 Opt. Express 29 10162
[16] Weng C X, Lu Y S, Gao R Q, Xie Y M, Gu J, Li C L, Li B H, Yin H L and Chen Z B 2021 Opt. Express 29 27661
[17] Yin H L, Yao F, Li C L, Weng C X, Li B H, Gu J, Lu Y S, Huang S and Chen Z B 2022 Nat. Sci. Rev. nwac228
[18] Song X L, Liu Y B, Deng H Y and Xiao Y G 2017 Sci. Rep. 7 6366
[19] Mashhadi S 2019 Quantum Inf. Process. 18 114
[20] Sutradhar K and Om H 2021 Sci. Rep 11 17083
[21] Qin H W, Tang W K and Tso R 2020 Quantum Inf. Process. 19 71
[22] Guo R and Cheng X G 2022 Quantum Inf. Process. 21 37
[23] Shamir A 1979 Communications of the ACM 22 612
[24] Diao Z J, Huang C and Wang K 2012 Acta Applicandae Mathematicae 118 147
[25] Shi R H, Mu Y, Zhong H, Cui J and Zhang S 2016 Sci. Rep. 6 19655
[26] Mashhadi S 2019 Quantum Inf. Process. 18 114
[27] Yi X, Cao C, Fan L and Zhang R 2021 Quantum Inf. Process. 20 7
[28] Thas. K 2009 Europhys. Lett. 86 6
[29] Yang Y H, Gao F, Wu X, Qin S J, Zuo H J and Wen Q Y 2015 Sci. Rep. 5 16967
[30] Li Q, Chan W H and Long D Y 2009 Phys. Rev. A 79 054307
[31] Sun Y, Wen Q Y, Gao F and Zhu F C 2009 Phys. Rev. A 80 032321
[32] Zhang Q, Yin J, Chen T Y, Lu S, Zhang J, Li X Q, Yang T, Wang X B and Pan J W 2006 Phys. Rev. A 73 020301
[33] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light: Science & Applications 5 e16144
[34] Aigner M and Ziegler G M 2004 Proofs From the Book (Berlin: Springer) pp. 7-13
[35] Zhang K J, Zhang W W and Li D 2013 Quantum Inf. Process. 12 2655
[36] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[1] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[2] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[3] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[4] Single-qubit quantum classifier based on gradient-free optimization algorithm
Anqi Zhang(张安琪), Kelun Wang(王可伦), Yihua Wu(吴逸华), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(10): 100308.
[5] A quantum algorithm for Toeplitz matrix-vector multiplication
Shang Gao(高尚) and Yu-Guang Yang(杨宇光). Chin. Phys. B, 2023, 32(10): 100309.
[6] Anomalous non-Hermitian dynamical phenomenon on the quantum circuit
Chenxiao Dong(董陈潇), Zhesen Yang(杨哲森), Jinfeng Zeng(曾进峰), and Jiangping Hu(胡江平). Chin. Phys. B, 2023, 32(7): 070305.
[7] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[8] Efficient semi-quantum secret sharing protocol using single particles
Ding Xing(邢丁), Yifei Wang(王艺霏), Zhao Dou(窦钊), Jian Li(李剑),Xiubo Chen(陈秀波), and Lixiang Li(李丽香). Chin. Phys. B, 2023, 32(7): 070308.
[9] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
[10] Quantum homomorphic broadcast multi-signature based on homomorphic aggregation
Xin Xu(徐鑫) and Ai-Han Yin(殷爱菡). Chin. Phys. B, 2023, 32(7): 070302.
[11] Improved quantum key agreement protocol with authentication
Ji-Hong Guo(郭继红), Ming-Qiang Bai(柏明强), Xiao-Yan Lei(雷小燕), Jia-Xin Xie(谢佳欣), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(5): 050310.
[12] Quantum color image scaling based on bilinear interpolation
Chao Gao(高超), Ri-Gui Zhou(周日贵), and Xin Li(李鑫). Chin. Phys. B, 2023, 32(5): 050303.
[13] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[14] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[15] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
No Suggested Reading articles found!