|
|
Application of Newtonian approximate model to LIGO gravitational wave data processing |
Jie Wu(吴洁)1,2, Jin Li(李瑾)1,2,†, and Qing-Quan Jiang(蒋青权)3,‡ |
1 College of Physics, Chongqing University, Chongqing 401331, China; 2 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China; 3 School of Physics and Astronomy, China West Normal University, Nanchong 637009, China |
|
|
Abstract With the observation of a series of ground-based laser interferometer gravitational wave (GW) detectors such as LIGO and Virgo, nearly 100 GW events have been detected successively. At present, all detected GW events are generated by the mergers of compact binary systems and are identified through the data processing of matched filtering. Based on matched filtering, we use the GW waveform of the Newtonian approximate (NA) model constructed by linearized theory to {match the events detected by LIGO and injections to determine the coalescence time and} utilize the frequency curve for data fitting to estimate the parameters of the chirp masses of binary black holes (BBHs). The average chirp mass of our results is 22.05-6.31+6.31 M⊙, which is very close to 23.80-3.52+4.83 M⊙ provided by GWOSC. In the process, we can analyze LIGO GW events and estimate the chirp masses of the BBHs. This work presents the feasibility and accuracy of the low-order approximate model and data fitting in the application of GW data processing. It is beneficial for further data processing and has certain research value for the preliminary application of GW data.
|
Received: 18 March 2023
Revised: 18 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
04.30.-w
|
(Gravitational waves)
|
|
04.80.Nn
|
(Gravitational wave detectors and experiments)
|
|
97.60.Lf
|
(Black holes)
|
|
02.60.Ed
|
(Interpolation; curve fitting)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFC2203004), the National Natural Science Foundation of China (Grant No. 12147102), and the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038). |
Corresponding Authors:
Jin Li, Qing-Quan Jiang
E-mail: cqujinli1983@cqu.edu.cn;qqjiangphys@yeah.net
|
Cite this article:
Jie Wu(吴洁), Jin Li(李瑾), and Qing-Quan Jiang(蒋青权) Application of Newtonian approximate model to LIGO gravitational wave data processing 2023 Chin. Phys. B 32 090401
|
[1] Hulse R A and Taylor J H 1975 Astrophys. J. Lett. 195 L51 [2] Press W H and Thorne K S 1972 Ann. Rev. Astron. Astrophys. 10 335 [3] Aasi J, Abbott B P, Abbott R, et al. 2016 Class. Quantum Grav. 32 074001 [4] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 061102 [5] Abbott B P, Abbott R, Abbott T D, et al. 2017 Phys. Rev. Lett. 119 161101 [6] Abbott B P, Abbott R, Abbott T D, et al. 2020 Astrophys. J. Lett. 892 L3 [7] Abbott B P, Abbott R, Abbott T D, et al. 2017 Astrophys. J. Lett. 848 L12 [8] Abbott B P, Abbott R, Abbott T D, et al. 2017 Astrophys. J. Lett. 848 L13 [9] Abbott B P, Abbott R, Abbott T D, et al. 2019 Astrophys. J. 875 161 [10] Abbott B P, Abbott R, Abbott T D, et al. 2017 Nature 551 85 [11] Bailes M, Berger B K, Brady P R, et al. 2017 Nat. Rev. Phys. 3 344 [12] Damour T, Nagar A and Bernuzzi S 2013 Phys. Rev. D 87 084035 [13] Babak S, Taracchini A and Buonanno A 2017 Phys. Rev. D 95 024010 [14] Pretorius F 2005 Phys. Rev. Lett. 95 121101 [15] Manuela C, Carlos O L, Pedro M and Yosef Z 2006 Phys. Rev. Lett. 96 111101 [16] Baker J G, Centrella J, Choi D, Koppitz M and Meter J 2006 Phys. Rev. Lett. 96 111102 [17] Damour T 2001 Phys. Rev. D 64 124013 [18] Taracchini A, Buonanno A, Pan Y, et al. 2014 Phys. Rev. D 89 061502 [19] Christensen N and Meyer R 2022 Rev. Mod. Phys. 94 025001 [20] Veitch J, Raymond V, Farr B, et al. 2015 Phys. Rev. D 91 042003 [21] Foreman-Mackey D, Hogg D W, Lang D and Goodman J 2013 Publ. Astron. Soc. Pac. 125 306 [22] Skilling J 2006 Bayesian Anal. 1 833 [23] George D and Huerta E A 2018 Phys. Lett. B 778 64 [24] Vallisneri M, Kanner J, Williams R, Weinstein A and Stephens B 2015 J. Phys. Conf. Ser. 610 012021 [25] Sathyaprakash B S and Schutz B F 2009 Living Rev. Rel. 12 2 [26] Cai R G, Cao Z J, Guo Z K, Wang S J and Yang T 2017 Natl. Sci. Rev. 4 687 [27] Bian L G, Cai R G, Cao S, et al. 2021 Sci. China Phys. Mech. Astron. 64 120401 [28] Pan Y, Buonanno A, Fujita R, Racine E and Tagoshi H 2011 Phys. Rev. D 83 064003 [29] Favata M 2009 Phys. Rev. D 80 024002 [30] Maggiore M 2007 Gravitational Waves: Theory and Experiments, Vol. 1 (New York: Oxford University Press) p. 173 [31] Allen B, Anderson W G, Brady P R, Brown D A and Creighton J D E 2012 Phys. Rev. D 85 122006 [32] Wang Y Z, Wu X and Zhong S Y 2012 Acta Phys. Sin. 61 160401 (in Chinese) [33] Peters P C and Mathews J 1963 Phys. Rev. 131 435 [34] Abbott B P, Abbott R, Adhikari R, et al. 2009 Phys. Rev. D 80 062001 [35] Li J and Benacquista M 2010 Gen. Rel. Grav. 42 2511 [36] Abramovici A, Althouse W A, Drever R W P, et al. 1992 Science 256 325 [37] Abbott B P, Abbott R, Adhikari R, et al. 2009 Rep. Prog. Phys. 72 076901 [38] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241102 [39] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. Lett. 116 241103 [40] Abbott B P, Abbott R, Abbott T D, et al. 2017 Phys. Rev. Lett. 118 221101 [41] Biwer C M, Capano C D, De S, et al. 2016 Publications of the Astronomical Society of the Pacific 131 024503 [42] Peters P C 1964 Phys. Rev. 136 B1224 [43] Zhong S Y, Liu S and Hu S J 2013 Acta Phys. Sin. 62 230401 (in Chinese) [44] Zhong S Y and Liu S 2012 Acta Phys. Sin. 61 120401 (in Chinese) [45] Li L S 1997 Chin. Phys. Lett. 14 328 [46] Harry G M 2010 Class. Quantum Grav. 27 084006 [47] Acernese F, Agathos M, Agatsuma K, et al. 2015 Class. Quantum Grav. 32 024001 [48] Abbott B P, Abbott R, Abbott T D, et al. 2017 Class. Quantum Grav. 34 044001 [49] Abbott B P, Abbott R, Abbott T D, et al. 2020 Class. Quantum Grav. 37 055002 [50] Flanagan É É and Hughes S A 1998 Phys. Rev. D 57 4566 [51] Usman S A, Nitz A H, Harry I W, et al. 2016 Class. Quantum Grav. 33 215004 [52] Yi S X, Nelemans G, Brinkerink C, et al. 2022 Astron. Astrophys. 663 A155 [53] Bohe A, Shao L, Taracchini A, et al. 2017 Phys. Rev. D 95 044028 [54] Abbott R, Abbott T D, Abraham S, et al. 2021 SoftwareX 13 100658 [55] Abbott B P, Abbott R, Abbott T D, et al. 2019 Phys. Rev. X 9 031040 [56] Abbott R, Abbott T D, Abraham S, et al. 2021 Phys. Rev. X 11 021053 [57] Abbott R, Abbott T D, Acernese F, et al. 2021 arXiv: 2108.01045 [58] Abbott R, Abbott T D, Acernese F, et al. 2021 arXiv: 2111.03606 [59] Cornish N J and Littenberg T B 2015 Class. Quantum Grav. 32 135012 [60] Abbott B P, Abbott R, Abbott T D, et al. 2016 Phys. Rev. D 93 122004 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|