Abstract Magnetic microbubbles (MMBs) can be controlled and directed to the target site by a suitable external magnetic field, and thus have potential in therapeutic drug-delivery application. However, few studies focus on their dynamics in blood vessels under the action of magnetic and ultrasonic fields, giving little insight into the mechanism generated in diagnostic and therapeutic applications. In this study, equations of MMBs were established for simulating translation, radial pulsation and the coupled effect of both. Meanwhile, the acoustic streaming and shear stress on the vessel wall were also presented, which are associated with drug release. The results suggest that the magnetic pressure increases the bubble pulsation amplitude, and the translation coupled with pulsation is manipulated by the magnetic force, causing retention in the target area. As the bubbles approach the vessel wall, the acoustic streaming and shear stress increase with magnetic field enhancement. The responses of bubbles to a uniform and a gradient magnetic field were explored in this work. The mathematical models derived in this work could provide theoretical support for experimental phenomena in the literature and also agree with the reported models.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074238, 11974232, and 11727813).
Corresponding Authors:
Chenghui Wang, Runyang Mo
E-mail: wangld001@snnu.edu.cn;mmrryycn@snnu.edu.cn
Cite this article:
Jie Chen(陈杰), Chenghui Wang(王成会), and Runyang Mo(莫润阳) Dynamics of magnetic microbubble transport in blood vessels 2023 Chin. Phys. B 32 094302
[1] Owen J, Crake C, Lee J Y, Carugo D, Beguin E, Khrapitchev A A, Browning J R, Sibson N and Stride E 2018 Drug Deliv. Transl. Res.2 342 [2] Zhang B, Kim H, Wu H, Gao Y and Jiang X 2019 Ultrasonics98 62 [3] Yang F, Gu Z, Jin X, Wang H and Gu N 2013 Chin. Phys. B22 104301 [4] Poehlmann M, Grishenkov D, Kothapalli S V, Härmark J, Hebert H, Philipp A, Hoeller R, Seuss M, Kuttner C and Margheritelli S 2014 Soft Matter10 214 [5] Guo H, Jiang Z, Song S, Dai T, Wang X, Sun K, Zhou G and Dou H 2016 J. Colloid Interface Sci.482 95 [6] Niu C, Wang Z, Lu G, Krupka T M, Sun Y, You Y, Song W, Ran H, Li P and Zheng Y 2013 Biomaterials34 2307 [7] Duan L, Yang F, Song L, Fang K, Tian J, Liang Y, Li M, Xu N, Chen Z, Zhang Y and Gu N 2015 Soft Matter11 5492 [8] Stride E, Porter C, Prieto A G and Pankhurst Q 2009 Ultrasound Med. Biol.35 861 [9] Mulvana H, Eckersley R J, Browning R, Hajnal J V, Stride E, Barrack T, Tang M, Pankhurst Q and Wells D 2010 Proc. IEEE Int. Ultrason. Symp. [10] Vlaskou D, Mykhaylyk O, Krotz F, Hellwig N, Renner R, Schillinger U, Gleich B, Heidsieck A, Georg Schmitz G, Hensel K and Plank C 2010 Adv. Funct. Mater.20 3881 [11] de Saint Victor M, Barnsley L C, Carugo D, Owen J, Coussios C C and Stride E 2018 Ultrasound Med. Biol.45 1151 [12] Gao Y, Chan C U, Gu Q, Lin X, Zhang W, Yeo D C L, Alsema A M, Arora M, Chong M S K, Shi P, Ohl C D and Xu C 2016 NPG Asia Mater.8 e260 [13] Beguin E, Gray M D, Logan K A, Nesbitt H, Sheng Y, Kamila S, Barnsley L C, Bau L, McHale A P, Callan J F and Stride E 2020 J. Control. Release317 23 [14] Lajoinie G, Luan Y, Gelderblom E, Dollet B, Mastik F, Dewitte H, Lentacker I, de Jong N and Versluis M 2018 Comm. Phys.1 1 [15] Fang Y, Zhang M, He W, Chen P, Cai X, Yang L, Gu N and Wu J 2011 Small7 902 [16] Mulvana H, Eckersley R, Tang M X, Pankhurst Q and Stride E 2012 Ultrasound Med. Biol.38 864 [17] Guo G, Lu L, Yin L, Tu J, Guo X, Wu J, Xu D and Zhang D 2014 Phys. Med. Biol.59 6729 [18] Gu Y, Chen C, Tu J, Guo X, Wu H and Zhang D 2016 Ultrason. Sonochem.29 309 [19] Zhao X, Quinto-Su P A and Ohl C D 2009 Phys. Rev. Lett.102 024501 [20] Roovers S, Lajoinie G, De Cock I, Brans T, Dewitte H, Braeckmans K, Versluis M, De Smedt S and Lentacker I 2019 Biomaterials217 119250 [21] Yang Y, Li Q, Guo X, Tu J and Zhang D 2020 Ultrason. Sonochem.67 105096 [22] Sheng Y, Beguin E, Nesbitt H, Kamila S, Owen J, Barnsley L C, Callan B, O'Kane C, Nomikou N, Hamoudi R, Taylor M A, Love M, Kelly P, O'Rourke D, Stride E, McHale A P and Callan J F 2017 J. Control. Release262 192 [23] Roovers S, Deprez J, Priwitaningrum D, Lajoinie G, Rivron N, Declercq H, De Wever O, Stride E, Le Gac S, Versluis M, Prakash J, De Smedt S C and Lentacker I 2019 J. Control. Release316 79 [24] Barnsley L C, Carugo D, Aron M and Stride E 2017 Phys. Med. Biol.62 2333 [25] Barnsley L C, Gray M D, Beguin E, Carugo D and Stride E 2018 Adv. Mater. Technol.3 1800081 [26] Zhao L, Shi H, Bello I, Hu J, Wang C and Mo R 2022 Chin. Phys. B31 034302 [27] Lind S J 2014 Phys. Fluids26 061901 [28] Malvar S, Gontijo R G and Cunha F R 2018 J. Eng. Math.108 143 [29] Chen J, Zhao L, Wang C and Mo R 2021 J. Magn. Magn. Mater.538 168293 [30] Doinikov A A, Haac J F and Dayton P A 2009 Ultrasonics49 269 [31] Zudin Y B, Isakov N S and Zenin V V 2014 J. Eng. Phys. Thermophys.87 1 [32] Tomita Y, Robinson P B, Tong R P and Blake J R 2002 J. Fluid Mech.466 259 [33] Doinikov A A 2002 Phys. Fluids14 1420 [34] Kinefuchi K and Kobayashi H 2018 Phys. Fluids30 062101 [35] Magnaudet J and Legendre D 1998 Phys. Fluids10 550 [36] Vlachomitrou M and Pelekasis N 2021 Phys. Rev. Fluids6 013601 [37] Sassaroli E and Hynynen K 2005 Phys. Med. Biol.50 5293 [38] SotoÁ M, Peñas P, Lajoinie G, Lohse D and van der Meer D 2020 Phys. Rev. Fluids5 063605 [39] Wang L, Tu J, Guo X, Xu D and Zhang D 2014 Chin. Phys. B23 124302 [40] Nyborg W L 1958 J. Acoust. Soc. Am.30 329 [41] Segers T and Versluis M 2014 Lab Chip14 1705 [42] Dzaharudin F, Ali N M, Alias E A and Jamaludin U K 2018 MATEC Web of Conferences225 04015 [43] Deng J, Yang R and Lu H 2021 Ultrason. Sonochem.71 105371 [44] Beekers I, Van Rooij T, Van d S A F W, de Jong N, Verweij M D and Kooiman K 2019 IEEE Trans. Ultrason. Ferroelect. Freq. Contr.66 244 [45] Van der Meer S M, Dollet B, Voormolen M M, Chin C T, Bouakaz A, de Jong N, Versluis M and Lohse D 2007 J. Acoust. Soc. Am.121 648 [46] Sassaroli E and Hynynen K 2005 Phys. Med. Biol.50 5293 [47] Oguz H N and ProsperettiA 1998 J. Acoust. Soc. Am.103 3301 [48] Garbin V, Cojoc D, Ferrari E, Di Fabrizio E, Overvelde M L J, van der Meer S M, de Jong N, Lohse D and Versluis M 2007 Appl. Phys. Lett.90 114103 [49] Hosseinkhah N and Hynynen K 2012 Phys. Med. Biol.57 785 [50] Mifsud J, Lockerby D A, Chung Y M and Jones G 2021 Phys. Fluids33 122114 [51] Marmottant P and Hilgenfeldt S 2003 Nature423 153 [52] Young J B, Schmiedel T and Kang W 1996 Phys. Rev. Lett.77 4816 [53] Yasui K 1999 Phys. Rev. E60 1759 [54] Behnia S, Mobadersani F, Yahyavi M, Rezavand A, Hoesinpour N and Ezzat A 2015 Chaos Solitons Fractals78 194 [55] Yang Y, Pacia C P, Ye D, Yue Y, Chien C Y and Chen H 2021 Radiology300 681
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.