Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080701    DOI: 10.1088/1674-1056/aca206
GENERAL Prev   Next  

Parameter estimation method for a linear frequency modulation signal with a Duffing oscillator based on frequency periodicity

Ningzhe Zhang(张宁哲), Xiaopeng Yan(闫晓鹏), Minghui Lv(吕明慧), Xiumei Chen(陈秀梅), and Dingkun Huang(黄鼎琨)
Science and Technology on Electromechanical Dynamic Control Laboratory, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract  In view of the complexity of existing linear frequency modulation (LFM) signal parameter estimation methods and the poor antinoise performance and estimation accuracy under a low signal-to-noise ratio (SNR), a parameter estimation method for LFM signals with a Duffing oscillator based on frequency periodicity is proposed in this paper. This method utilizes the characteristic that the output signal of the Duffing oscillator excited by the LFM signal changes periodically with frequency, and the modulation period of the LFM signal is estimated by autocorrelation processing of the output signal of the Duffing oscillator. On this basis, the corresponding relationship between the reference frequency of the frequency-aligned Duffing oscillator and the frequency range of the LFM signal is analyzed by the periodic power spectrum method, and the frequency information of the LFM signal is determined. Simulation results show that this method can achieve high-accuracy parameter estimation for LFM signals at an SNR of -25 dB.
Keywords:  linear frequency modulation (LFM) signal      Duffing oscillator      frequency periodicity      parameter estimation  
Received:  02 August 2022      Revised:  14 October 2022      Accepted manuscript online:  11 November 2022
PACS:  07.50.Qx (Signal processing electronics)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61973037).
Corresponding Authors:  Xiaopeng Yan     E-mail:  yanxiaopeng@bit.edu.cn

Cite this article: 

Ningzhe Zhang(张宁哲), Xiaopeng Yan(闫晓鹏), Minghui Lv(吕明慧), Xiumei Chen(陈秀梅), and Dingkun Huang(黄鼎琨) Parameter estimation method for a linear frequency modulation signal with a Duffing oscillator based on frequency periodicity 2023 Chin. Phys. B 32 080701

[1] Wang C H, Shao W J and Ju Y 2020 Shipboard Electron. Count. 43 76
[2] Boashash B and Ouelha S 2018 Digit. Signal Prog. 77 120
[3] Diao M, Zhu Y F, Ning X Y and Wang Z D 2022 J. Harbin Insti. Technol. 54 88
[4] Jing F L, Zhang C J, Si W J, Wang Y and Jiao S H 2019 J. Xidian Uni. 46 102
[5] O'Shea P 2002 IEEE Signal Process. Lett. 9 251
[6] O'Shea P 2004 IEEE Signal Process. Lett. 52 385
[7] Wang P and Yang J Y 2006 Digit. Signal Prog. 16 654
[8] Wang P, Li H B, Djurović I and Himed B 2010 IEEE Trans. Aerospace Electron. Syst. 46 963
[9] Li D, Zhan M Y, Su J, Liu H Q, Zhang X P and Liao G S 2017 IEEE Trans. Geos. Remote Sens. 55 6402
[10] Zheng J B, Liu H W and Liu Q H 2017 IEEE Trans. Signal Process. 65 6435
[11] Almeida L B 1994 IEEE Trans. Signal Process. 42 3084
[12] Qi L, Tao R, Zhou S Y and Wang Y 2003 Sci. Chin. Ser. E 33 749
[13] Huang X, Tang S Y, Zhang L R and Gu Y B 2017 J. Electron. Inf. Technol. 39 2905
[14] Liu L M, LI H X, LI Q, Han Z Z and Gao Z B 2021 J. Electron. Inf. Technol. 43 2798
[15] Liu X L, Han J, Wang C Y and Xiao B 2019 Optik 182 529
[16] Guo Y, Zhang X W and Yang L D 2021 Optik 239 166681
[17] Wang K, Yan X P, Zhu Z Q, Hao X H, Li P and Yang Y 2020 Sensors 20 6412
[18] Wang G Y, Chen D J, Lin J Y and Chen X 1999 IEEE Trans. Ind. Electron. 46 440
[19] Aledealat K, Khasawinah K, Obeidat A, Gharaibeh M, Jaradat A, Hasan M K Qaseer and Rousan A A 2018 AIP Adv. 8 095102
[20] Zhu Z Q, Hou J, Yan X P, Li P and Hao X H 2019 J. Beijing Uni. Aero. Astro. 45 2069
[21] Liu B and Liu J M 2001 J. Electron. Meas. Instrum. 15 41
[22] Zhang Q J, Han X L and Liu J 2017 Spacecraft Eng. 26 1
[23] Springer A, Pohl A, Gugler W, Huemer M, Reindl L, Ruppel C C W, Seifert F and Weigel R 1998 IEEE MTT-S International Microwave Symposium Digest, June 07-12, 1998, Baltimore, MD, USA
[24] Gao F, Yin H S and Zhang C X 2011 Appl. Electron. Tech. 37 95
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[5] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[6] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[7] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[8] Weak wide-band signal detection method based on small-scale periodic state of Duffing oscillator
Jian Hou(侯健), Xiao-peng Yan(闫晓鹏), Ping Li(栗苹), Xin-hong Hao(郝新红). Chin. Phys. B, 2018, 27(3): 030702.
[9] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[10] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[11] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[12] A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection
Li Meng-Ping (李梦平), Xu Xue-Mei (许雪梅), Yang Bing-Chu (杨兵初), Ding Jia-Feng (丁家峰). Chin. Phys. B, 2015, 24(6): 060504.
[13] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
[14] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军). Chin. Phys. B, 2013, 22(10): 100502.
[15] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
Li Xiang-Tao(李向涛) and Yin Ming-Hao(殷明浩) . Chin. Phys. B, 2012, 21(5): 050507.
No Suggested Reading articles found!