Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080502    DOI: 10.1088/1674-1056/acc7fe
GENERAL Prev   Next  

Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice

Xixian Zhang(张希贤)1,2 and Hao Hu(胡皓)1,†
1. School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China;
2. School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Abstract  A Janus particle has two distinct areas on its surface. Denoting the two areas as P (patch) and N (nonpatch), when two particles come close to each other, the strength of the PP interaction is usually different from that of the NN interaction. Recently the interplay between a rotational-symmetry-breaking continuous phase transition and percolation has been explored for an equilibrium system of asymmetrically interacting (i.e., attractive PP interaction, zero NN and PN interactions) Janus disks on the triangular lattice. By Monte Carlo simulation and finite-size scaling analysis, in this work we study an equilibrium system of symmetrically interacting (i.e., attractive PP and NN interactions with the same strength, zero PN interaction) Janus disks on the same lattice. By definition, the phase diagram in the T-θ plane is symmetric for systems with patch sizes θ below and above 90°. We determine the phase diagram and compare it with that of the asymmetric system. Similar to the latter system, for 60° < θ < 90°, a rotational-symmetry-breaking continuous phase transition and an anisotropic percolation transition are found in the symmetric system, though the transition points in the two systems are quite different. Phase crossover curves are found to be different, e.g., a continuous varying crossover line extends between θ=0° and 90° for the symmetric model; and in the range 0° < θ ≤ 30°, along the crossover lines of the two models, the trends of 1/T vs. θ are opposite in the two systems. We understand the latter by analytically solving the models with two particles in 0° < θ ≤ 30°. These results are helpful for understanding close-packed systems of Janus disks with more complex interactions.
Keywords:  Janus particles      phase transitions      percolation      Monte Carlo methods  
Received:  02 January 2023      Revised:  06 March 2023      Accepted manuscript online:  28 March 2023
PACS:  05.70.Fh (Phase transitions: general studies)  
  05.10.Ln (Monte Carlo methods)  
  82.70.Dd (Colloids)  
  64.60.ah (Percolation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No.11905001).
Corresponding Authors:  Hao Hu     E-mail:  huhao@ahu.edu.cn

Cite this article: 

Xixian Zhang(张希贤) and Hao Hu(胡皓) Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice 2023 Chin. Phys. B 32 080502

[1] Casagrande C and Veyssié M 1988 C. R. Acad. Sci. (Paris) II-306 1423
[2] Casagrande C, Fabre P, Raphal E and Veyssié M 1989 Europhys. Lett. 9 251
[3] Lahann J 2011 Small 7 1149
[4] Zhang J, Grzybowski B A and Granick S 2017 Langmuir 33 6964
[5] Kirillova A, Marschelke C and Synytska A 2019 ACS. Appl. Mater. Interfaces 11 9643
[6] Zhang X, Fu Q, Duan H, Song J and Yang H 2021 ACS Nano 15 6147
[7] Chen Q, Bae S C and Granick S 2011 Nature 469 381
[8] Mao X, Chen Q and Granick S 2013 Nat. Mater. 12 217
[9] Jiang S, Yan J, Whitmer J K, Anthony S M, Luijten E and Granick S 2014 Phys. Rev. Lett. 112 218301
[10] Rezvantalab H, Beltran-Villegas D J and Larson R G 2016 Phys. Rev. Lett. 117 128001
[11] Huang Z, Zhu G, Chen P, Hou C and Yan L T 2019 Phys. Rev. Lett. 122 198002
[12] Huang T, Han Y L and Chen Y 2020 Soft Matter 6 3015
[13] Liang Y H, Ma B and Olvera de la Cruz M 2021 Phys. Rev. E 103 062607
[14] Mitsumoto K and Yoshino H 2018 Soft Matter 14 3919
[15] Shin H and Schweizer K S 2014 Soft Matter 10 262
[16] Iwashita Y and Kimura Y 2014 Soft Matter 10 7170
[17] Patrykiejew A and Rmżysko W 2020 Physica A 548 123883
[18] Patrykiejew A and Rmżysko W 2021 Physica A 570 125819, containing corrections to Ref. [17]
[19] Huang T, Zeng C H, Wang H, Chen Y and Han Y L 2022 Phys. Rev. E 106 014612
[20] Hu H, Ziff R M and Deng Y J 2022 Phys. Rev. Lett. 129 278002
[21] Wang Q C, He Z F, Wang J F and Hu H 2022 Phys. Rev. E 105 034118
[22] Kern N and Frenkel D 2003 J. Chem. Phys. 118 9882
[23] Jiang S and Granick S 2008 Langmuir 24 2438
[24] Manousiouthakis V I and Deem M W 1999 J. Chem. Phys. 110 2753
[25] Scullard C R and Ziff R M 2008 Phys. Rev. Lett. 100 185701
[26] Scullard C R and Ziff R M 2010 J. Stat. Mech. P03021
[27] Scullard C R 2011 J. Stat. Mech. P09022
[28] Scullard C R and Jacobsen J L 2012 J. Phys. A: Math Theor. 45 494004
[29] Mertens S and Ziff R M 2016 Phys. Rev. E 94 062152
[30] Scullard C R and Jacobsen J L 2020 Phys. Rev. Res. 2 012050
[31] Machta J, Choi Y S, Lucke A, Schweizer T and Chayes L M 1996 Phys. Rev. E 54 1332
[32] Newman M E J and Ziff R M 2001 Phys. Rev. E 64 016706
[33] Xu W H, Wang J F, Hu H and Deng Y J 2021 Phys. Rev. E 103 022127
[34] Fisher M E and Stephenson J 1963 Phys. Rev. 132 1411
[35] Fendley P, Moessner R and Sondhi S L 2002 Phys. Rev. B 66 214513
[1] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[2] Percolation transitions in edge-coupled interdependent networks with directed dependency links
Yan-Li Gao(高彦丽), Hai-Bo Yu(于海波), Jie Zhou(周杰), Yin-Zuo Zhou(周银座), and Shi-Ming Chen(陈世明). Chin. Phys. B, 2023, 32(9): 098902.
[3] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[4] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[5] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[6] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[7] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[10] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[11] Discontinuous and continuous transitions of collective behaviors in living systems
Xu Li(李旭), Tingting Xue(薛婷婷), Yu Sun(孙宇), Jingfang Fan(樊京芳), Hui Li(李辉), Maoxin Liu(刘卯鑫), Zhangang Han(韩战钢), Zengru Di(狄增如), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2021, 30(12): 128703.
[12] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[13] Crystal melting processes of propylene carbonate and 1,3-propanediol investigated by the reed-vibration mechanical spectroscopy for liquids
Li-Na Wang(王丽娜), Xing-Yu Zhao(赵兴宇), Heng-Wei Zhou(周恒为), Li Zhang(张丽), Yi-Neng Huang(黄以能). Chin. Phys. B, 2019, 28(9): 096401.
[14] Calculation of the infrared frequency and the damping constant (full width at half maximum) for metal organic frameworks
M Kurt, H Yurtseven, A Kurt, S Aksoy. Chin. Phys. B, 2019, 28(6): 066401.
[15] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
No Suggested Reading articles found!