Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 080501    DOI: 10.1088/1674-1056/acc05c
GENERAL Prev   Next  

On numerical stationary distribution of overdamped Langevin equation in harmonic system

De-Zhang Li(李德彰) and Xiao-Bao Yang(杨小宝)
Department of Physics, South China University of Technology, Guangzhou 510640, China
Abstract  Efficient numerical algorithm for stochastic differential equation has been an important object in the research of statistical physics and mathematics for a long time. In this work we study the highly accurate numerical algorithm for the overdamped Langevin equation. In particular, our interest is in the behaviour of the numerical schemes for solving the overdamped Langevin equation in the harmonic system. Based on the large friction limit of the underdamped Langevin dynamic scheme, three algorithms for overdamped Langevin equation are obtained. We derive the explicit expression of the stationary distribution of each algorithm by analysing the discrete time trajectory for both one-dimensional case and multi-dimensional case. The accuracy of the stationary distribution of each algorithm is illustrated by comparing with the exact Boltzmann distribution. Our results demonstrate that the "BAOA-limit" algorithm generates an accurate distribution of the harmonic system in a canonical ensemble, within a stable range of time interval. The other algorithms do not produce the exact distribution of the harmonic system.
Keywords:  numerical stationary distribution      overdamped Langevin equation      exact solution      harmonic system  
Received:  12 December 2022      Revised:  22 January 2023      Accepted manuscript online:  02 March 2023
PACS:  05.20.-y (Classical statistical mechanics)  
  05.10.Gg (Stochastic analysis methods)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No.2021A1515010328), the Key-Area Research and Development Program of Guangdong Province, China (Grant No.2020B010183001), and the National Natural Science Foundation of China (Grant No.12074126).
Corresponding Authors:  Xiao-Bao Yang     E-mail:  scxbyang@scut.edu.cn

Cite this article: 

De-Zhang Li(李德彰) and Xiao-Bao Yang(杨小宝) On numerical stationary distribution of overdamped Langevin equation in harmonic system 2023 Chin. Phys. B 32 080501

[1] Langevin P 1908 C. R. Acad. Sci. (Paris) 146 530
[2] Lemons D S and Gythiel A 1997 Am. J. Phys. 65 1079
[3] Einstein A 1905 Ann. Phys. 322 549
[4] Einstein A 1906 Ann. Phys. 324 371
[5] Smoluchowski M v 1906 Ann. Phys. 326 756
[6] Kampen N G v 2009 Stochastic Processes in Physics and Chemistry 3rd edn. (Amsterdam: Elsevier)
[7] Zwanzig R 2001 Nonequilibrium statistical mechanics (New York: Oxford University Press)
[8] Leimkuhler B and Sachs M 2022 J. Sci. Comput. 44 A364
[9] Fokker A D 1914 Ann. Phys. 348 810
[10] Planck V 1917 Akad. Wiss. 24 324
[11] Risken H 1989 The Fokker-Planck Equation: Methods of Solution and Applications (Berlin: Springer-Verlag)
[12] Pavliotis G A 2014 Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations (New York: Springer)
[13] Leimkuhler B and Matthews C 2013 Appl. Math. Res. Express 2013 34
[14] Leimkuhler B, Matthews C and Tretyakov M V 2014 Proc. R. Soc. A 470 20140120
[15] Vilmart G 2015 SIAM J. Sci. Comput. 37 A201
[16] Fathi M and Stoltz G 2017 Numer. Math. 136 545
[17] Shang X and Kröger M 2020 SIAM Rev. 62 901
[18] Uhlenbeck G E and Ornstein L S 1930 Phys. Rev. 36 823
[19] Wang M C and Uhlenbeck G E 1945 Rev. Mod. Phys. 17 323
[20] Verlet L 1967 Phys. Rev. 159 98
[21] Leimkuhler B and Matthews C 2013 J. Chem. Phys. 138 174102
[22] Li D, Han X, Chai Y, Wang C, Zhang Z, Chen Z, Liu J and Shao J 2017 J. Chem. Phys. 147 184104
[23] Leimkuhler B, Matthews C and Stoltz G 2016s IMA J. Numer. Anal. 36 13
[24] Gronbech-Jensen N and Farago O 2013 Mol. Phys. 111 983
[25] Liu J, Li D and Liu X 2016 J. Chem. Phys. 145 024103
[26] Zhang Z, Liu X, Chen Z, Zheng H, Yan K and Liu J 2017 J. Chem. Phys. 147 034109
[27] Li D, Chen Z, Zhang Z and Liu J 2017 Chin. J. Chem. Phys. 30 735
[28] Gronbech-Jensen N 2020 Mol. Phys. 118 e1662506
[29] Zhang Z, Yan K, Liu X and Liu J 2018 Chin. Sci. Bull. 63 3467
[30] Zhang Z, Liu X, Yan K, Tuckerman M E and Liu J 2019 J. Phys. Chem. A 123 6056
[31] Orland H 2011 J. Chem. Phys. 134 174114
[32] Majumdar S N and Orland H 2015 J. Stat. Mech. 2015 P06039
[33] Delarue M, Koehl P and Orland H 2017 J. Chem. Phys. 147 152703
[34] Elber R, Makarov D E and Orland H 2020 Molecular Kinetics in Condensed Phases: Theory, Simulation, and Analysis (Hoboken, NJ: Wiley)
[35] Koehl P and Orland H 2022 J. Chem. Phys. 157 054105
[36] Li D, Zeng J, Huang W, Yao Y and Yang X 2023 Phys. Scr. 98 025218
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[7] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[8] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[9] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[10] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[11] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[12] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[13] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[14] Interplay between spin frustration and magnetism in the exactly solved two-leg mixed spin ladder
Yan Qi(齐岩), Song-Wei Lv(吕松玮), An Du(杜安), Nai-sen Yu(于乃森). Chin. Phys. B, 2016, 25(11): 117501.
[15] Improvement of variational approach in an interacting two-fermion system
Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波). Chin. Phys. B, 2015, 24(8): 086701.
No Suggested Reading articles found!