|
|
Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions |
Ting Chen(陈婷)1,†, Lei Wu(吴磊)1,†, Ru-Kui Zhang(张儒奎)1, Yong-Bo Tang(唐永波)2, Jun Jiang(蒋军)1,‡, and Chen-Zhong Dong(董晨钟)1 |
1 Key Laboratory of Atomic and Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China; 2 Physics Teaching and Experiment Center, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract The wave functions, energy levels and matrix elements of Yb$^{+}$ ions are calculated using the relativistic configuration interaction plus core polarization (RCICP) method. The static and dynamic electric dipole polarizabilities of the ground state and low-lying excited states are determined. Then, the magic wavelengths of the magnetic sublevel 6${\rm s}_{1/2,\, m=1/2} \to 5{\rm d}_{3/2,\, m=\pm 3/2,\,\pm 1/2}$ and 6${\rm s}_{1/2,\, m=1/2}\to 5{\rm d}_{5/2,\, m=\pm 5/2,\, \pm 3/2,\, \pm 1/2}$ transitions in the linearly, right-handed, and left-handed polarized light are further determined. The dependence of the magic wavelengths upon the angle between the direction of magnetic field and the direction of laser polarization is analyzed.
|
Received: 04 November 2022
Revised: 12 January 2023
Accepted manuscript online: 16 February 2023
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 12174316 and 12174268), the Young Teachers Scientific Research Ability Promotion Plan of Northwest Normal University (Grant No. NWNU-LKQN2020-10), the Innovative Fundamental Research Group Project of Gansu Province, China (Grant No. 20JR5RA541), and the Project of the Educational Commission of Guangdong Province of China (Grant No. 2020KTSCX124). |
Corresponding Authors:
Jun Jiang
E-mail: phyjiang@yeah.net
|
Cite this article:
Ting Chen(陈婷), Lei Wu(吴磊), Ru-Kui Zhang(张儒奎), Yong-Bo Tang(唐永波), Jun Jiang(蒋军), and Chen-Zhong Dong(董晨钟) Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions 2023 Chin. Phys. B 32 053206
|
[1] Katori H, Ido T and Gonokami M K 1999 J. Phys. Soc. Jpn. 68 2479 [2] Ye J, Vernooy D W and Kimble H J 1999 Phys. Rev. Lett. 83 4987 [3] Takamoto M and Katori H 2003 Phys. Rev. Lett. 91 223001 [4] Quinn T 2005 Metrologia 42 E01 [5] Wu X M, Li C B, Tang Y B and Shi T Y 2016 Chin. Phys. B 25 093101 [6] Angstmann E J, Dzuba V A and Flambaum V V 2006 Phys. Rev. Lett. 97 040802 [7] Chou C W, Hume D B, Koelemeij J C, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [8] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [9] Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C and Peik E 2012 Phys. Rev. Lett. 108 090801 [10] Gill P, Barwood G P, Klein H A, Huang G, Webster S A, Blythe P J, Hosaka K, Lea S N and Margolis H S 2003 IEEE Meas. Sci. Technol. 14 1174 [11] Peik E, Lipphardt B, Schnatz H, Schneider T, Tamm C and Karshenboim S G 2004 Phys. Rev. Lett. 93 170801 [12] Tamm C, Weyers S, Lipphardt B and Peik E 2009 Phys. Rev. A 80 043403 [13] Peik E, Schneider T and Tamm C 2006 J. Phys. B 39 145 [14] Yu N and Maleki L 2000 Phys. Rev. A 61 022507 [15] Taylor P, Roberts M, Gateva-Kostova S V, Clarke R B M, Barwood G P, Rowley W R C and Gill P 1997 Phys. Rev. A 56 2699 [16] Tamm C, Lipphardt B, Schnatz H, Wynands R, Weyers S, Schneider T and Peik E 2007 IEEE Trans. Instrum. Mes. 56 601 [17] Ding L Y, Zhang Q X, Zhu C C, Wang Y X, Zhang X and Zhang W 2021 Sci. Sin.-Phys. Mech. Astron. 51 074206 [18] Sahoo B K and Das B P 2011 Phys. Rev. A 84 010502 [19] Flambaum V V, Geddes A J and Viatkina A V 2018 Phys. Rev. A 97 032510 [20] Counts I, Hur J, Diana P L, Aude C, Jeon H, Leung C, Berengut J C, Geddes A, Kawasaki A, Jhe W and Vuletic V 2020 Phys. Rev. Lett. 125 123002 [21] Dzuba V A, Flambaum V V, Safronova M S, Porsev S G, Pruttivarasin T, Hohensee M A and Häffner H 2016 Nat. Phys. 12 465 [22] Monroe C, Campbell W C, Duan L M, Gong Z X, Gorshkov A V, Hess P W, Islam R, Kim K, Linke N M, Pagano G, Richerme P, Senko C and Yao N Y 2021 Rev. Mod. Phys. 93 025001 [23] Porsev S G, Safronova M S and Kozlov M G 2012 Phys. Rev. A 86 022504 [24] Jiang J, Mitroy J, Cheng Y J and Bromley M W J 2016 Phys. Rev. A 94 062514 [25] Grant I P 1989 Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms (New York: AIP) p. 235 [26] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) p. 797 [27] Roy A, De S, Arora B and Sahoo B K 2017 J. Phys. B 50 205201 [28] Kien L F, Schneeweiss P and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92 [29] Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 320 [30] Beloy K 2009 "Theory of the ac Stark Effect on the Atomic Hyperfine Structure and Applications to Microwave Atomic Clocks", Ph.D thesis (Reno: University of Nevada) [31] Mitroy J, Griffin D C, Norcross D W and Pindzola M S 1988 Phys. Rev. A 38 3339 [32] Marinescu M, Sadeghpour H R and Dalgarno A 1994 Phys. Rev. A 49 5103 [33] Hafner P and Schwarz W H E 1978 J. Phys. B 11 217 [34] Kolb D, Johnson W R and Shorer P 1982 Phys. Rev. A 26 19 [35] Safronova U I and Safronova M S 2009 Phys. Rev. A 79 022512 [36] Biémont E, Dutrieux J F, Martin I and Quinet P 1998 J. Phys. B 31 3321 [37] Olmschenk S, Younge K C, Moehring D L, Matsukevich D N, Maunz P and Monroe C 2007 Phys. Rev. A 76 052314 [38] Olmschenk S, Hayes D, Matsukevich D N, Maunz P, Moehring D L, Younge K C and Monroe C 2009 Phys. Rev. A 80 022502 [39] Pinnington E H, Berends R W and Ji Q 1994 Phys. Rev. A 50 2758 [40] Kramida A 2013 Fusion. Sci. Technol. 63 313 [41] Jiang J, Li X J, Wang X, Dong C Z and Wu Z W 2020 Phys. Rev. A 102 042823 [42] Migdalek J 1982 J. Quantum Spectrosc. Radiat. Transfer 28 61 [43] Lea S N, Webster S A and Barwood G P 2006 Proceedings of the 20th European Frequency and Time Forum (EFTF), March 27-30, PTB Braunschweig, Germany, p. 302 [44] Schnei K.der T, Peik E and Tamm C 2005 Phys. Rev. Lett. 94 230801 [45] Jiang J, Jiang L, Wang X, Zhang D H, Xie L Y and Dong C Z 2017 Phys. Rev. A 96 042503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|