CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries |
Xiang-Gong Zhang(张祥功)1, Wei Wu(吴伟)2, Si-Si Zhou(周思思)1,†, Fei Huang(黄飞)2, Shi-Hao Xu(许诗浩)2, Liang Yin(尹良)2,3,‡, Wei Yang(杨伟)2,§, and Hong Li(李泓)2,3 |
1 Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China; 2 Tianmu Lake Institute of Advanced Energy Storage Technologies Co., Ltd., Liyang 213300, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The present commercial spinel LiMn$_{2}$O$_{4}$ delivers only 90 mAh/g-115 mAh/g, far lower than the theoretical specific capacity. It degrades fast caused by the Jahn-Teller effect, Mn dissolution and related side reactions that consume Li inventory. In this work, Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn$_{2}$O$_{4}$. Li$_{1.06}$Mn$_{1.94-x}$Zr$_{x}$O$_{4}$ ($x = 0$, 0.01, 0.02, 0.04) have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries (LIB). Li$_{1.06}$Mn$_{1.92}$Zr$_{0.02}$O$_{4}$ is superior cathode material with a high capacity of 122 mAh/g at 1-C rate; long cycle stability, 98.39% retention after 100 cycles at 1-C rate, excellent high rate performance 107.1 mAh/g at 10-C rate, and high temperature performance 97.39% retention after 60 cycles. These are thought to be related to Zr doping effectively stabilizing the spinel LiMn$_{2}$O$_{4}$, by forming stronger Zr-O bonds in the octahedron, suppressing the Jahn-Teller effect, thus improving electrochemical performance.
|
Received: 30 December 2022
Revised: 30 January 2023
Accepted manuscript online: 06 February 2023
|
PACS:
|
61.50.-f
|
(Structure of bulk crystals)
|
|
61.66.Fn
|
(Inorganic compounds)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.45.Fk
|
(Electrodes)
|
|
Fund: Project supported by research on high power flexible battery in all sea depth (Grant No. 2020-XXXX-XX-246-00). |
Corresponding Authors:
Si-Si Zhou, Liang Yin, Wei Yang
E-mail: zhousisi18@126.com;lyin@iphy.ac.cn;billwyang@163.com
|
Cite this article:
Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓) Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries 2023 Chin. Phys. B 32 056101
|
[1] Wang F, Harindintwali J D and Yuan Z, et al. 2021 Innovation 2 100180 [2] Lin R and Ren J 2020 Renewable Energy and Sustainable Development 6 3 [3] Tarascon J M and Armand M 2001 Nature 414 359 [4] Thackeray M M and Amine K 2021 Nature Energy 6 566 [5] Eriksson T 2001 LiMn2O4 as a Li-Ion Battery Cathode: From Bulk to Electrolyte Interface (Uppsala Universitet) [6] Thackeray M M 1997 Manganese oxides for lithium batteries, Vol. 25 pp. 1-71 [7] Yoshio M, Noguchi H, Xia Y and Ikeda K 1996 Denki Kagaku 64 123 [8] Xia Y and Yoshio M 1995 Journal of Power Sources 57 125 [9] Xia Y and Yoshio M 1997 Journal of Power Sources 66 129 [10] Xia Y, Hideshima Y, Kumada N, Nagano M and Yoshio M 1998 Journal of Power Sources 74 24 [11] Xia Y and Yoshio M 2003 Lithium Batteries: Science and Technology, eds. Nazri G A and Pistoia G (Boston, MA: Springer US) pp. 361-380 [12] Tang D, Sun Y, Yang Z, Ben L, Gu L and Huang X 2014 Chemistry of Materials 26 3535 [13] Sun Z, Li M, Xiao B, Liu X, Lin H, Jiang B, Liu H, Li M, Peng D L and Zhang Q 2022 eTransportation 14 100203 [14] Wang R, Chen X, Huang Z, Yang J, Liu F, Chu M, Liu T, Wang C, Zhu W, Li S, Li S, Zheng J, Chen J, He L, Jin L, Pan F and Xiao Y 2021 Nat. Commun. 12 3085 [15] Chudzik K, Świȩtosławski M, Bakierska M, Kubicka M, Natkański P, Kawałko J and Molenda M 2021 Electrochimica Acta 373 137901 [16] Ramana C V, Massot M and Julien C M 2005 Surf. Interface Anal. 37 412 [17] Jiang B, Li J, Luo B, Yan Q, Li H, Liu L, Chu L, Li Y, Zhang Q and Li M 2021 Journal of Energy Chemistry 60 564 [18] Wen W, Ju B, Wang X, Wu C, Shu H and Yang X 2014 Electrochimica Acta 147 271 [19] Ji H, Ben L, Wang S, Liu Z, Monteiro R, Ribas R, Yu H, Gao P, Zhu Y and Huang X 2021 ACS Appl. Energy Mater. 4 8350 [20] Yu Y, Xiang M, Guo J, Su C, Liu X, Bai H, Bai W and Duan K 2019 Journal of Colloid and Interface Science 555 64 [21] Liu X, Wang J, Zhang J and Yang S 2006 Journal of Materials Science: Materials in Electronics 17 865 [22] Ramogayana B, Maenetja K P and Ngoepe P E 2022 Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 40 22 [23] Ram P, Singhal R, Choudhary G and Sharma R K 2017 Journal of Electroanalytical Chemistry 802 94 [24] Guohua L, Ikuta H, Uchida T and Wakihara M 1996 Journal of The Electrochemical Society 143 178 [25] Fu Y, Jiang H, Hu Y, Dai Y, Zhang L and Li C 2015 Industrial and Engineering Chemistry Research 54 3800 [26] Hou Y, Chang K, Tang H, Li B, Hou Y and Chang Z 2019 Electrochimica Acta 319 587 [27] Li Y, Zhu G, Ran Q, Liu J, Zhou Y, Zhao M, Cao P and Zhao H 2021 International Journal of Electrochemical Science 16 1 [28] Zhao H, Li F, Bai X, Wu T, Wang Z, Li Y and Su J 2018 Materials 11 1302 [29] Zhao H, Bai X, Wang J, Li D, Li B, Wang Y, Dong L, Liu B and Komarneni S 2018 Materials 11 1558 [30] Zhao H, Liu S, Wang Z, Cai Y, Tan M and Liu X 2016 Electrochimica Acta 199 18 [31] Li L, Fu L, Li M, Wang C, Zhao Z, Xie S, Lin H, Wu X, Liu H, Zhang L, Zhang Q and Tan L 2022 Journal of Energy Chemistry 71 588 [32] Todorov Y M, Hideshima Y, Noguchi H and Yoshio M 1999 Journal of Power Sources 77 198 [33] Julien C 2003 Solid State Ionics 159 345 [34] Murali N, Margarette S J and Veeraiah V 2016 IOP Conference Series: Materials Science and Engineering 149 012193 [35] Ammundsen B, Burns G R, Islam M S, Kanoh H and Roziére J 1999 J. Phys. Chem. B 103 5175 [36] Baddour-Hadjean R and Pereira-Ramos J P 2010 Chem. Rev. 110 1278 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|