|
|
A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field |
Jiajie Li(李佳洁)1,2, Xiujie Fang(房秀杰)2,3,†, Renjie Li(李任杰)1,2, Baodong Chen(陈宝栋)1,2, Yueyang Zhai(翟跃阳)1,2, and Ying Liu(刘颖)1,2,‡ |
1 Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology(Ministry of Education), School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; 2 Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China; 3 School of Physics, Beihang University, Beijing 100191, China |
|
|
Abstract We experimentally study the dynamic characteristics of a miniaturized spin-exchange relaxation-free (SERF) magnetometer based on uniform light field. The ceramic ferrule is used to expand the Gaussian beam to improve light intensity uniformity, while the volume of the sensor is also reduced. This scheme makes the magnetometer have better sensitivity when the detected light intensity is less than 3.16 mW/cm2 at 120 ℃. When the temperature rises to 150 ℃ the sensitivity under the action of uniform light field is 18.5 fT/Hz1/2. The bandwidth of the sensor remains at the original level and meets application needs. The proposed structure improves transverse polarization uniformity within the miniaturized sensor, which is ideal for the magnetoencephalography and magnetocardiography imaging systems.
|
Received: 31 October 2022
Revised: 21 November 2022
Accepted manuscript online: 02 December 2022
|
PACS:
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
33.35.+r
|
(Electron resonance and relaxation)
|
|
07.07.Mp
|
(Transducers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62003020). |
Corresponding Authors:
Xiujie Fang, Ying Liu
E-mail: fangxiujie@buaa.edu.cn;liu_ying@buaa.edu.cn
|
Cite this article:
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖) A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field 2023 Chin. Phys. B 32 053201
|
[1] Lü X Y, Zhu R B, Song H, Su N and Chen G 2019 Acta Phys. Sin. 68 214201 (in Chinese) [2] Wang X, Zou Y, He Z, Liu G and Ma X 2020 Chin. Phys. B 29 084208 [3] Zhai Y, Carson C H, Henderson V A, Griffin P F, Riis E and Arnold A S 2018 Optica 5 805 [4] Qiu X, Xu Z, Peng X, Li L, Zhou Y, Wei M, Z M and Xu X 2020 Appl. Phys. Lett. 116 034001 [5] Liu J, Savici A T, Granroth G E, Habicht K, Qiu Y, Hu J, Mao Z and Bao W 2018 Chin. Phys. Lett. 35 127401 [6] Zhang Y, Tian Y, Li S, Chen J and Gu S 2019 Phys. Rev. Appl. 12 011004 [7] Brazhnikov D, Ignatovich S, Mesenzova I, Novokreshchenov A and Goncharov A 2020 Opt. Lett. 45 3309 [8] Fang J C, Wang T, Zhang H, Li Y and Cai H W 2015 Chin. Phys. B 24 060702 [9] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596 [10] Tang F and Zhao N 2020 Chin. Phys. B 29 090303 [11] Allred J, Lyman R N, Kornack T W and Romalis M V 2002 Appl. Phys. Lett. 89 130801 [12] Pan Y P, Wang Y, Yang R T, Tang Y, Liu X Y, Jin H, Ma L, Lin Y, Wang Z, Ren J, Wang Y and Chen L 2020 Chin. Phys. Lett. 37 080702 [13] Okada Y, Hnen M, Pratt K, Mascarenas A, Miller P, Han M, Robles J, Cavallini A, Power B, Sieng K, Sun L M, Lew S, Doshi C, Ahtam B, Dinh C, Esch L, Grant E, Nummenmaa A, Paulson D and Paulson D 2016 Rev. Sci. Instrum. 87 094301 [14] Hill R M, Devasagayam J, Holmes N, Boto E, Shah V, Osborne J, Safar K, Worcester F, Mariani C, Dawson E, Woolger D, Bowtell R, Taylor M J and Brookes M J 2022 NeuroImage 253 119084 [15] Tang J, Zhai Y, Cao L, Zhang Y, Li L, Zhao B, Zhou B, Han B and Liu G 2021 Opt. Express 29 15641 [16] Elzenheimer E, Laufs H, Schulte-Mattler W and Schmidt G 2020 IEEE Trans. Neural Syst. Rehabil. Eng. 22 1018 [17] Borna A, Iivanainen J, Carter T R, McKay J, Taulu S, Stephen J and Schwindt P D 2022 NeuroImage 247 118818 [18] Strand S, Lutter W, Strasburger J F, Shah V, Baffa O and Wakai R T 2019 J. Am. Heart Assoc. 8 e013436 [19] Fink A, Baumer D and Brunner E 2005 Phys. Rev. Appl. 72 053411 [20] Fink A and Brunner E 2007 Appl. Phys. B: Lasers Opt. 89 65 [21] Ito Y, Sato D, Kamada K and Kobayashi T 2016 Opt. Express 24 15391 [22] Ito S, Ito Y and Kobayashi T 2019 Opt. Express 27 8037 [23] Mizutani N, Okano K, Ban K, Ichihara S, Terao A and Kobayashi T 2014 AIP Adv. 4 057132 [24] Lin H F, Jan H T, Chen C F and Hsu H C 2010 Optik 121 2250 [25] Sinchuk K, Dudley R, Graham J D, Clare M, Woldeyohannes M, Schenk J O, Ingel R P, Yang W G and Fiddy M A 2010 Opt. Express 18 463 [26] Zhong K, Gao Y, Li F, Zhang Z and Luo N 2014 Optik 125 2413 [27] Chen X, Fang X, Ma D, Liu Y, Cao L and Zhai Y 2022 Appl. Opt. 61 C55 [28] Shah V K and Wakai R T 2013 Phys. Med. Biol. 58 8153 [29] Sulai I A, DeLand Z J, Bulatowicz M D, Wahl C P, Wakai R T and Walker T G 2019 Rev. Sci. Instrum. 90 085003 [30] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt P D 2016 Opt. Express 24 15403 [31] Hill R M, Boto E, Holmes N, Hartley C, Seedat Z A, Leggett J, Roberts G, Shah V, Tierney T M, Woolrich M W, Stagg C J, Barnes G R, Bowtell R, Slater R and Brookes M J 2019 Nat. Commun. 10 4785 [32] Yuchen J, Zhanchao L, Binquan Z, Xiaoyang L, Wenfeng W, Jinpeng P, Ming D, Yueyang Z and Jiancheng F 2019 J. Phys. D: Appl. Phys. 52 355001 [33] Lancor B, Babcock E, Wyllie R and Walker T G 2010 Phys. Rev. Appl. 82 043435 [34] Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R and Happer W 1998 Phys. Rev. A 58 1412 [35] Seltzer S J 2008 Developments in alkali-metal atomic magnetometry (Ph.D. Dissertation) (Princeton University) [36] Hwang C and Cheng Y C 2005 Automatica 41 1979 [37] Li R, Quan W and Fang J 2017 IEEE Photon. J. 9 1 [38] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408 [39] Wang Y, Jin G, Tang J, Zhou W, Han B, Zhou B and Shi T 2022 Opt. Express 30 23587 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|