Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 053201    DOI: 10.1088/1674-1056/aca7f2
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field

Jiajie Li(李佳洁)1,2, Xiujie Fang(房秀杰)2,3,†, Renjie Li(李任杰)1,2, Baodong Chen(陈宝栋)1,2, Yueyang Zhai(翟跃阳)1,2, and Ying Liu(刘颖)1,2,‡
1 Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology(Ministry of Education), School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China;
2 Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China;
3 School of Physics, Beihang University, Beijing 100191, China
Abstract  We experimentally study the dynamic characteristics of a miniaturized spin-exchange relaxation-free (SERF) magnetometer based on uniform light field. The ceramic ferrule is used to expand the Gaussian beam to improve light intensity uniformity, while the volume of the sensor is also reduced. This scheme makes the magnetometer have better sensitivity when the detected light intensity is less than 3.16 mW/cm2 at 120 ℃. When the temperature rises to 150 ℃ the sensitivity under the action of uniform light field is 18.5 fT/Hz1/2. The bandwidth of the sensor remains at the original level and meets application needs. The proposed structure improves transverse polarization uniformity within the miniaturized sensor, which is ideal for the magnetoencephalography and magnetocardiography imaging systems.
Keywords:  atomic magnetometer      uniform light field      polarization      sensitivity  
Received:  31 October 2022      Revised:  21 November 2022      Accepted manuscript online:  02 December 2022
PACS:  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  33.35.+r (Electron resonance and relaxation)  
  07.07.Mp (Transducers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62003020).
Corresponding Authors:  Xiujie Fang, Ying Liu     E-mail:  fangxiujie@buaa.edu.cn;liu_ying@buaa.edu.cn

Cite this article: 

Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖) A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field 2023 Chin. Phys. B 32 053201

[1] Lü X Y, Zhu R B, Song H, Su N and Chen G 2019 Acta Phys. Sin. 68 214201 (in Chinese)
[2] Wang X, Zou Y, He Z, Liu G and Ma X 2020 Chin. Phys. B 29 084208
[3] Zhai Y, Carson C H, Henderson V A, Griffin P F, Riis E and Arnold A S 2018 Optica 5 805
[4] Qiu X, Xu Z, Peng X, Li L, Zhou Y, Wei M, Z M and Xu X 2020 Appl. Phys. Lett. 116 034001
[5] Liu J, Savici A T, Granroth G E, Habicht K, Qiu Y, Hu J, Mao Z and Bao W 2018 Chin. Phys. Lett. 35 127401
[6] Zhang Y, Tian Y, Li S, Chen J and Gu S 2019 Phys. Rev. Appl. 12 011004
[7] Brazhnikov D, Ignatovich S, Mesenzova I, Novokreshchenov A and Goncharov A 2020 Opt. Lett. 45 3309
[8] Fang J C, Wang T, Zhang H, Li Y and Cai H W 2015 Chin. Phys. B 24 060702
[9] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[10] Tang F and Zhao N 2020 Chin. Phys. B 29 090303
[11] Allred J, Lyman R N, Kornack T W and Romalis M V 2002 Appl. Phys. Lett. 89 130801
[12] Pan Y P, Wang Y, Yang R T, Tang Y, Liu X Y, Jin H, Ma L, Lin Y, Wang Z, Ren J, Wang Y and Chen L 2020 Chin. Phys. Lett. 37 080702
[13] Okada Y, Hnen M, Pratt K, Mascarenas A, Miller P, Han M, Robles J, Cavallini A, Power B, Sieng K, Sun L M, Lew S, Doshi C, Ahtam B, Dinh C, Esch L, Grant E, Nummenmaa A, Paulson D and Paulson D 2016 Rev. Sci. Instrum. 87 094301
[14] Hill R M, Devasagayam J, Holmes N, Boto E, Shah V, Osborne J, Safar K, Worcester F, Mariani C, Dawson E, Woolger D, Bowtell R, Taylor M J and Brookes M J 2022 NeuroImage 253 119084
[15] Tang J, Zhai Y, Cao L, Zhang Y, Li L, Zhao B, Zhou B, Han B and Liu G 2021 Opt. Express 29 15641
[16] Elzenheimer E, Laufs H, Schulte-Mattler W and Schmidt G 2020 IEEE Trans. Neural Syst. Rehabil. Eng. 22 1018
[17] Borna A, Iivanainen J, Carter T R, McKay J, Taulu S, Stephen J and Schwindt P D 2022 NeuroImage 247 118818
[18] Strand S, Lutter W, Strasburger J F, Shah V, Baffa O and Wakai R T 2019 J. Am. Heart Assoc. 8 e013436
[19] Fink A, Baumer D and Brunner E 2005 Phys. Rev. Appl. 72 053411
[20] Fink A and Brunner E 2007 Appl. Phys. B: Lasers Opt. 89 65
[21] Ito Y, Sato D, Kamada K and Kobayashi T 2016 Opt. Express 24 15391
[22] Ito S, Ito Y and Kobayashi T 2019 Opt. Express 27 8037
[23] Mizutani N, Okano K, Ban K, Ichihara S, Terao A and Kobayashi T 2014 AIP Adv. 4 057132
[24] Lin H F, Jan H T, Chen C F and Hsu H C 2010 Optik 121 2250
[25] Sinchuk K, Dudley R, Graham J D, Clare M, Woldeyohannes M, Schenk J O, Ingel R P, Yang W G and Fiddy M A 2010 Opt. Express 18 463
[26] Zhong K, Gao Y, Li F, Zhang Z and Luo N 2014 Optik 125 2413
[27] Chen X, Fang X, Ma D, Liu Y, Cao L and Zhai Y 2022 Appl. Opt. 61 C55
[28] Shah V K and Wakai R T 2013 Phys. Med. Biol. 58 8153
[29] Sulai I A, DeLand Z J, Bulatowicz M D, Wahl C P, Wakai R T and Walker T G 2019 Rev. Sci. Instrum. 90 085003
[30] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt P D 2016 Opt. Express 24 15403
[31] Hill R M, Boto E, Holmes N, Hartley C, Seedat Z A, Leggett J, Roberts G, Shah V, Tierney T M, Woolrich M W, Stagg C J, Barnes G R, Bowtell R, Slater R and Brookes M J 2019 Nat. Commun. 10 4785
[32] Yuchen J, Zhanchao L, Binquan Z, Xiaoyang L, Wenfeng W, Jinpeng P, Ming D, Yueyang Z and Jiancheng F 2019 J. Phys. D: Appl. Phys. 52 355001
[33] Lancor B, Babcock E, Wyllie R and Walker T G 2010 Phys. Rev. Appl. 82 043435
[34] Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R and Happer W 1998 Phys. Rev. A 58 1412
[35] Seltzer S J 2008 Developments in alkali-metal atomic magnetometry (Ph.D. Dissertation) (Princeton University)
[36] Hwang C and Cheng Y C 2005 Automatica 41 1979
[37] Li R, Quan W and Fang J 2017 IEEE Photon. J. 9 1
[38] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A 77 033408
[39] Wang Y, Jin G, Tang J, Zhou W, Han B, Zhou B and Shi T 2022 Opt. Express 30 23587
[1] Complete hyperentangled Greenberger—Horne—Zeilinger state analysis for polarization and time-bin hyperentanglement
Zhi Zeng(曾志). Chin. Phys. B, 2023, 32(6): 060301.
[2] Single-electron transport in H2O@C60 single-molecule transistors
Bowen Liu(刘博文), Jun Chen(陈俊), Yiping Ouyang(欧阳一平), Minhao Zhang(张敏昊), Yuan-Zhi Tan(谭元植), and Fengqi Song(宋凤麒). Chin. Phys. B, 2023, 32(6): 063601.
[3] Magic wavelengths for 6s1/2 → 5d3/2,5/2 transitions of Yb+ ions
Ting Chen(陈婷), Lei Wu(吴磊), Ru-Kui Zhang(张儒奎), Yong-Bo Tang(唐永波), Jun Jiang(蒋军), and Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2023, 32(5): 053206.
[4] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[5] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[6] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[7] Angular insensitive nonreciprocal ultrawide band absorption in plasma-embedded photonic crystals designed with improved particle swarm optimization algorithm
Yi-Han Wang(王奕涵) and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044207.
[8] Lightweight broadband microwave absorbing metamaterial with CB-ABS composites fabricated by 3D printing
Meng-Zhou Chen(陈孟州), Liu-Ying Wang(汪刘应), Gu Liu(刘顾), Chao-Qun Ge(葛超群), Di-Chen Li(李涤尘), and Qing-Xuan Liang(梁庆宣). Chin. Phys. B, 2023, 32(4): 048103.
[9] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[10] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[11] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[12] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[13] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[14] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[15] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
No Suggested Reading articles found!