1 Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology(Ministry of Education), School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China; 2 Zhejiang Provincial Key Laboratory of Ultra-Weak Magnetic-Field Space and Applied Technology, Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China; 3 School of Physics, Beihang University, Beijing 100191, China
Abstract We experimentally study the dynamic characteristics of a miniaturized spin-exchange relaxation-free (SERF) magnetometer based on uniform light field. The ceramic ferrule is used to expand the Gaussian beam to improve light intensity uniformity, while the volume of the sensor is also reduced. This scheme makes the magnetometer have better sensitivity when the detected light intensity is less than 3.16 mW/cm2 at 120 ℃. When the temperature rises to 150 ℃ the sensitivity under the action of uniform light field is 18.5 fT/Hz1/2. The bandwidth of the sensor remains at the original level and meets application needs. The proposed structure improves transverse polarization uniformity within the miniaturized sensor, which is ideal for the magnetoencephalography and magnetocardiography imaging systems.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62003020).
Corresponding Authors:
Xiujie Fang, Ying Liu
E-mail: fangxiujie@buaa.edu.cn;liu_ying@buaa.edu.cn
Cite this article:
Jiajie Li(李佳洁), Xiujie Fang(房秀杰), Renjie Li(李任杰), Baodong Chen(陈宝栋), Yueyang Zhai(翟跃阳), and Ying Liu(刘颖) A miniaturized spin-exchange relaxation-free atomic magnetometer based on uniform light field 2023 Chin. Phys. B 32 053201
[1] Lü X Y, Zhu R B, Song H, Su N and Chen G 2019 Acta Phys. Sin.68 214201 (in Chinese) [2] Wang X, Zou Y, He Z, Liu G and Ma X 2020 Chin. Phys. B29 084208 [3] Zhai Y, Carson C H, Henderson V A, Griffin P F, Riis E and Arnold A S 2018 Optica5 805 [4] Qiu X, Xu Z, Peng X, Li L, Zhou Y, Wei M, Z M and Xu X 2020 Appl. Phys. Lett.116 034001 [5] Liu J, Savici A T, Granroth G E, Habicht K, Qiu Y, Hu J, Mao Z and Bao W 2018 Chin. Phys. Lett.35 127401 [6] Zhang Y, Tian Y, Li S, Chen J and Gu S 2019 Phys. Rev. Appl.12 011004 [7] Brazhnikov D, Ignatovich S, Mesenzova I, Novokreshchenov A and Goncharov A 2020 Opt. Lett.45 3309 [8] Fang J C, Wang T, Zhang H, Li Y and Cai H W 2015 Chin. Phys. B24 060702 [9] Kominis I K, Kornack T W, Allred J C and Romalis M V 2003 Nature422 596 [10] Tang F and Zhao N 2020 Chin. Phys. B29 090303 [11] Allred J, Lyman R N, Kornack T W and Romalis M V 2002 Appl. Phys. Lett.89 130801 [12] Pan Y P, Wang Y, Yang R T, Tang Y, Liu X Y, Jin H, Ma L, Lin Y, Wang Z, Ren J, Wang Y and Chen L 2020 Chin. Phys. Lett.37 080702 [13] Okada Y, Hnen M, Pratt K, Mascarenas A, Miller P, Han M, Robles J, Cavallini A, Power B, Sieng K, Sun L M, Lew S, Doshi C, Ahtam B, Dinh C, Esch L, Grant E, Nummenmaa A, Paulson D and Paulson D 2016 Rev. Sci. Instrum.87 094301 [14] Hill R M, Devasagayam J, Holmes N, Boto E, Shah V, Osborne J, Safar K, Worcester F, Mariani C, Dawson E, Woolger D, Bowtell R, Taylor M J and Brookes M J 2022 NeuroImage253 119084 [15] Tang J, Zhai Y, Cao L, Zhang Y, Li L, Zhao B, Zhou B, Han B and Liu G 2021 Opt. Express29 15641 [16] Elzenheimer E, Laufs H, Schulte-Mattler W and Schmidt G 2020 IEEE Trans. Neural Syst. Rehabil. Eng.22 1018 [17] Borna A, Iivanainen J, Carter T R, McKay J, Taulu S, Stephen J and Schwindt P D 2022 NeuroImage247 118818 [18] Strand S, Lutter W, Strasburger J F, Shah V, Baffa O and Wakai R T 2019 J. Am. Heart Assoc.8 e013436 [19] Fink A, Baumer D and Brunner E 2005 Phys. Rev. Appl.72 053411 [20] Fink A and Brunner E 2007 Appl. Phys. B: Lasers Opt.89 65 [21] Ito Y, Sato D, Kamada K and Kobayashi T 2016 Opt. Express24 15391 [22] Ito S, Ito Y and Kobayashi T 2019 Opt. Express27 8037 [23] Mizutani N, Okano K, Ban K, Ichihara S, Terao A and Kobayashi T 2014 AIP Adv.4 057132 [24] Lin H F, Jan H T, Chen C F and Hsu H C 2010 Optik121 2250 [25] Sinchuk K, Dudley R, Graham J D, Clare M, Woldeyohannes M, Schenk J O, Ingel R P, Yang W G and Fiddy M A 2010 Opt. Express18 463 [26] Zhong K, Gao Y, Li F, Zhang Z and Luo N 2014 Optik125 2413 [27] Chen X, Fang X, Ma D, Liu Y, Cao L and Zhai Y 2022 Appl. Opt.61 C55 [28] Shah V K and Wakai R T 2013 Phys. Med. Biol.58 8153 [29] Sulai I A, DeLand Z J, Bulatowicz M D, Wahl C P, Wakai R T and Walker T G 2019 Rev. Sci. Instrum.90 085003 [30] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt P D 2016 Opt. Express24 15403 [31] Hill R M, Boto E, Holmes N, Hartley C, Seedat Z A, Leggett J, Roberts G, Shah V, Tierney T M, Woolrich M W, Stagg C J, Barnes G R, Bowtell R, Slater R and Brookes M J 2019 Nat. Commun.10 4785 [32] Yuchen J, Zhanchao L, Binquan Z, Xiaoyang L, Wenfeng W, Jinpeng P, Ming D, Yueyang Z and Jiancheng F 2019 J. Phys. D: Appl. Phys.52 355001 [33] Lancor B, Babcock E, Wyllie R and Walker T G 2010 Phys. Rev. Appl.82 043435 [34] Appelt S, Baranga A B A, Erickson C J, Romalis M V, Young A R and Happer W 1998 Phys. Rev. A58 1412 [35] Seltzer S J 2008 Developments in alkali-metal atomic magnetometry (Ph.D. Dissertation) (Princeton University) [36] Hwang C and Cheng Y C 2005 Automatica41 1979 [37] Li R, Quan W and Fang J 2017 IEEE Photon. J.9 1 [38] Ledbetter M P, Savukov I M, Acosta V M, Budker D and Romalis M V 2008 Phys. Rev. A77 033408 [39] Wang Y, Jin G, Tang J, Zhou W, Han B, Zhou B and Shi T 2022 Opt. Express30 23587
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.