Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050301    DOI: 10.1088/1674-1056/ac9fc5
GENERAL Prev   Next  

Rigorous solution to second harmonic generation considering transmission and reflection of light at air-crystal interface

Ya-Ting Qiu(邱雅婷), Li-Hong Hong(洪丽红), and Zhi-Yuan Li(李志远)
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
Abstract  Considering the transmission and reflection of TE-polarized pump light at the air-crystal interface, the second harmonic generation (SHG) in a lithium niobate (LN) crystal is investigated theoretically and systematically in this work. In previous studies, the theoretical analyses of reflection and transmission of incident wave in the process of nonlinear frequency conversion were not considered in LN crystal on account of the complicated calculations. First, we establish a physical picture describing that a beam of light in TE mode transports in the LN crystal considering transmission and reflection at the crystal surface and generates nonlinear second-order optical polarization in crystal. Then we analytically derive the reflection coefficient and transmission coefficient of pump light by using the dispersion relationships and electromagnetic boundary conditions. We construct the nonlinear coupled wave equations, derive and present the small signal approximation solution and the general large signal solution exactly. Under the transmission model and reflection model, we find that the conversion efficiency of the second-harmonic wave is obviously dependent on transmission coefficient and other general physical quantities such as the length of LN crystal and the amplitude of pump light. Our analytical theory and formulation can act as an accurate tool for the quantitative evaluation of the SHG energy conversion efficiency in an LN crystal under practical situations, and it can practically be used to treat other more complicated and general nonlinear optics problems.
Keywords:  nonlinear frequency conversion      transmission      reflection  
Received:  15 August 2022      Revised:  31 October 2022      Accepted manuscript online:  03 November 2022
PACS:  03.50.De (Classical electromagnetism, Maxwell equations)  
  42.70.Mp (Nonlinear optical crystals)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974119), the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), the Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06C594), and the National Key Research and Development Program of China (Grant No. 2018YFA 0306200).
Corresponding Authors:  Zhi-Yuan Li     E-mail:  phzyli@scut.edu.cn

Cite this article: 

Ya-Ting Qiu(邱雅婷), Li-Hong Hong(洪丽红), and Zhi-Yuan Li(李志远) Rigorous solution to second harmonic generation considering transmission and reflection of light at air-crystal interface 2023 Chin. Phys. B 32 050301

[1] Franken P A, Hill A E, Peters C W and Weinreich G 1961 Phys. Rev. Lett. 7 118
[2] Franken P A and Ward J F 1963 Rev. Mod. Phys. 35 23
[3] Fejer M M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
[4] Armstrong J A, Bloembergen N, Ducuing J and Pershan P S 1962 Phys. Rev. 127 1918
[5] Miller G D, Batchko R G, Tulloch W M, Weise D R, Fejer M M and Byer R L 1997 Opt. Lett. 22 1834
[6] Ni P, Ma B, Wang X, Cheng B and Zhang D 2003 Appl. Phys. Lett. 82 4230
[7] Zhu S, Zhu Y, Qin Y, Wang H, Ge C and Ming N 1997 Phys. Rev. Lett. 78 2752
[8] Chen B Q, Hong L H, Hu C Y, Zhang C, Liu R j and Li Z Y 2018 J. Opt. 20 034009
[9] Ma B, Wang T, Sheng Y, Ni P and Wang Y 2005 Appl. Phys. Lett. 87 251103
[10] Sheng Y, Dou J, Ma B, Cheng B and Zhang D 2007 Appl. Phys. Lett. 91 011101
[11] Berger V 1998 Phys. Rev. Lett. 81 4136
[12] Chen Y, Dang W, Zheng Y, Chen X and Deng X 2013 Opt. Lett. 38 2298
[13] Xu P, Ji S H, Zhu S N, Yu X Q, Sun J, Wang H T, He J L, Zhu Y Y and Ming N B 2004 Phys. Rev. Lett. 93 133904
[14] Qin Y, Zhang C, Zhu Y, Hu X and Zhao G 2008 Phys. Rev. Lett. 100 063902
[15] Chen B Q, Zhang C, Hu C Y, Liu R and Li Z 2015 Phys. Rev. Lett. 115 083902
[16] Boyd R W 2020 Nonlinear Optics (San Diego: Academic Press)
[17] Herman W N and Hayden L M 1995 J. Opt. Soc. Am. B 12 416
[18] Feng D, Ming N B, Hong J F, Yang Y S, Zhu J S, Yang Z and Wang Y N 1980 Appl. Phys. Lett. 37 607
[19] Peng L H, Hsu C C and Shih Y C 2003 Appl. Phys. Lett. 83 3447
[20] Arie A and Voloch N 2010 Laser Photon. Rev. 4 355
[21] Chen B Q, Ren M L, Liu R J, Zhang C, Sheng Y, Ma B Q and Li Z Y 2014 Light Sci. Appl. 3 e189
[22] Sheng Y, Ma D, Ren M, Chen B, Roppo V, Li Z, Koynov K and Krolikowski W 2012 J. Phys. D 45 365105
[23] Yang F, Wang Z, Zhou Y, Li F, Xu J, Xu Y, Cheng X, Lu Y, Bo Y, Peng Q, Cui D, Zhang X, Wang X, Zhu Y and Xu Z 2009 Appl. Phys. B-lasers Opt. 96 415
[24] Chen B Q, Zhang C, Liu R J and Li Z Y 2014 Appl. Phys. Lett. 105 151106
[25] Zhang J, Huang J Y, Wang H, Wong K S and Wong G K 1998 J. Opt. Soc. Am. B 15 200
[26] Avendaño-Alejo M, Stavroudis O N and Goitia A R B 2002 J. Opt. Soc. Am. A 19 1668
[27] Avendaño-Alejo M and Stavroudis O N 2002 J. Opt. Soc. Am. A 19 1674
[28] Mosteller L P and Wooten F 1968 J. Opt. Soc. Am. 58 511
[29] Simon M C 1983 Appl. Opt. 22 354
[30] Born M and Wolf E 1999 Principles of Optics, 7th edn. (Cambridge: Cambridge University Press) Chap. XV
[31] Pan J B, Chen J F, Hong L H, Long L and Li Z Y 2022 Chin. Phys. B 31 054201
[32] Edwards G J and Lawrence M 1984 Opt. Quantum Electron. 16 373
[33] Li Z Y, Gu B Y and Yang G Z 1999 Phys. Rev. B 60 10644
[34] Ren M L, Li Z Y 2011 Europhys. Lett. 94 44003
[1] Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y2Co17@SiO2 rare earth soft magnetic composites
Liang Qiao(乔亮), Cheng-Fa Tu(涂成发), Wei Wu(吴伟), Wen-Biao Wang(王文彪), Sheng-Yu Yang(杨晟宇), Sun Zhe(孙哲), Peng Wu(吴鹏), Jin-Bo Yang(杨金波), Chang-Sheng Wang(王常生), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2023, 32(5): 054202.
[2] Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉). Chin. Phys. B, 2023, 32(3): 037503.
[3] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[6] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[7] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[8] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[11] Soliton fusion and fission for the high-order coupled nonlinear Schrödinger system in fiber lasers
Tian-Yi Wang(王天一), Qin Zhou(周勤), and Wen-Jun Liu(刘文军). Chin. Phys. B, 2022, 31(2): 020501.
[12] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[13] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[14] One-dimensional $\mathcal{PT}$-symmetric acoustic heterostructure
Hai-Xiao Zhang(张海啸), Wei Xiong(熊威), Ying Cheng(程营), and Xiao-Jun Liu(刘晓峻). Chin. Phys. B, 2022, 31(12): 124301.
[15] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
No Suggested Reading articles found!