Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050311    DOI: 10.1088/1674-1056/ac89e3
GENERAL Prev   Next  

Nonadiabatic geometric phase in a doubly driven two-level system

Weixin Liu(刘伟新)1, Tao Wang(汪涛)2,3,†, and Weidong Li(李卫东)4
1 Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
2 Department of Physics, and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China;
3 Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, China;
4 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
Abstract  We study theoretically the nonadiabatic geometric phase of a doubly driven two-level system with an additional relative phase between the two driving modes introduced in. It is shown that the time evolution of the system strongly depends on this relative phase. The condition for the system returning to its initial state after a single period is given by the means of the Landau-Zener-Stückelberg-Majorana destructive interference. The nonadiabatic geometric phase accompanying a cyclic evolution is shown to be related to the Stokes phase as well as this relative phase. By controlling the relative phase, the geometric phase can characterize two distinct phases in the adiabatic limit.
Keywords:  two-level system      geometric phase      Landau-Zener-Stückelberg-Majorana interference  
Received:  28 May 2022      Revised:  06 August 2022      Accepted manuscript online:  16 August 2022
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Special Foundation for theoretical physics Research Program of China (Grant No. 11647165) and the China Postdoctoral Science Foundation Funded Project (Project No. 2020M673118). W.-D.L. acknowledges the funding from the National Natural Science Foundation of China (Grant No. 11874247), the National Key Research and Development Program of China (Grant No. 2017YFA0304500), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF201703), and the support from Guangdong Provincial Key Laboratory (Grant No. 2019B121203002).
Corresponding Authors:  Tao Wang     E-mail:  tauwaang@cqu.edu.cn

Cite this article: 

Weixin Liu(刘伟新), Tao Wang(汪涛), and Weidong Li(李卫东) Nonadiabatic geometric phase in a doubly driven two-level system 2023 Chin. Phys. B 32 050311

[1] Berry M V 1984 Proc. R. Soc. London, Ser. A 392 54
[2] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111
[3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[4] Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific)
[5] Simon B 1983 Phys. Rev. Lett. 51 2167
[6] Suter D, Mueller K T and Pines A 1988 Phys. Rev. Lett. 60 1218
[7] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[8] Mead C A 1992 Rev. Mod. Phys. 64 51
[9] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[10] Tong D M, Singh K, Kwek L C, Fan X J and Oh C H 2005 Phys. Lett. A 339 288
[11] Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
[12] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[13] Abdel-Khalek S, Berrada K, Mohamed A E S and Abel-Aty M 2013 Chin. Phys. B 22 100301
[14] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402
[15] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845
[16] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402
[17] de Chiara G and Palma G M 2003 Phys. Rev. Lett. 91 090404
[18] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301
[19] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404
[20] Tan X, Zhang D W, Zhang Z, Yu Y, Han S and Zhu S L 2014 Phys. Rev. Lett. 112 027001
[21] Möttönen M, Vartiainen J J and Pekola J P 2008 Phys. Rev. Lett. 100 177201
[22] Webb C L, Godun R M, Summy G S, Oberthaler M K, Featonby P D, Foot C J and Burnett K 1999 Phys. Rev. A 60 R1783
[23] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795
[24] Abdumalikov Jr A A, Fink J M, Juliusson K, Pechal M, Berger S, Wallraff A and Filipp S 2013 Nature 496 482
[25] Zhang L B, Song C, Wang H H and Zheng S B 2018 Chin. Phys. B 27 070303
[26] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[27] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401
[28] Kayanuma Y 1997 Phys. Rev. A 55 R2495
[29] Gasparinetti S, Solinas P and Pekola J P 2011 Phys. Rev. Lett. 107 207002
[30] Zhang J, Zhang J, Zhang X and Kim K 2014 Phys. Rev. A 89 013608
[31] Shevchenko S, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[32] Wang L, Tu T, Gong B, Zhou C and Guo G C 2016 Sci. Rep. 6 19048
[33] Ivakhnenko O V, Shevchenko S N and Nori F 2022 ArXiv: 2203.16348 [quant-ph]
[34] Wang X B and Matsumoto K J 2001 Phys. Rev. Lett. 87 097901
[35] Ji Y H, Cai S H, Le J X and Wang Z S 2010 Chin. Phys. B 19 010311
[36] Lu X T, Wang T, Li T, Zhou C H, Yin M J, Wang Y B, Zhang X F and Chang H 2021 Phys. Rev. Lett. 127 033601
[37] Shirley J H 1965 Phys. Rev. 138 B979
[38] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[39] Damski B and Zurek W H 2006 Phys. Rev. A 73 063405
[40] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[41] Zener C 1932 Proc. R. Soc. A 137 696
[42] Stückelberg E C G 1932 Helv. Phys. Acta 5 369
[43] Majorana E 1932 Nuovo Cimento 9 43
[44] Militello B D and Vitanov N V 2015 Phys. Rev. A 91 053402
[45] Lehto J and Suominen K A 2012 Phys. Rev. A 86 033415
[46] Liu W X, Wang T, Zhang X F and Li W D 2021 Phys. Rev. A 104 053318
[47] Yin M J, Lu X T, Li T, Xia J J, Wang T, Zhang X F and Chang H 2022 Phys. Rev. Lett. 128 073603
[48] Yin M J, Wang T, Lu X T, Li T, Wang Y B, Zhang X F, Li W D, Smerzi A and Chang H 2021 Chin. Phys. Lett. 38 073201
[49] Sjöqvist E 2008 Physics 1 35
[50] Sjöqvist E 2015 Int. J. Quantum Chem. 115 1311
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[3] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[4] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[5] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[6] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[7] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[8] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[9] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[10] Superconducting phase qubits with shadow-evaporated Josephson junctions
Fei-Fan Su(宿非凡), Wei-Yang Liu(刘伟洋), Hui-Kai Xu(徐晖凯), Hui Deng(邓辉), Zhi-Yuan Li(李志远), Ye Tian(田野), Xiao-Bo Zhu(朱晓波), Dong-Ning Zheng(郑东宁), Li Lv(吕力), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2017, 26(6): 060308.
[11] A method for generating double-ring-shaped vector beams
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农). Chin. Phys. B, 2016, 25(7): 074201.
[12] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利). Chin. Phys. B, 2013, 22(3): 030308.
[13] Quantum dynamic behaviour in a coupled cavities system
Peng Jun(彭俊), Wu Yun-Wen(邬云文), and Li Xiao-Juan(李小娟) . Chin. Phys. B, 2012, 21(6): 060302.
[14] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
Wang Yue-Ming(王月明), Du Guan(杜冠), and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2012, 21(4): 044207.
[15] Fidelity susceptibility and geometric phase in critical phenomenon
Tian Li-Jun(田立君), Zhu Chang-Qing(朱长青), Zhang Hong-Biao(张宏标), and Qin Li-Guo(秦立国) . Chin. Phys. B, 2011, 20(4): 040302.
No Suggested Reading articles found!