|
|
Nonadiabatic geometric phase in a doubly driven two-level system |
Weixin Liu(刘伟新)1, Tao Wang(汪涛)2,3,†, and Weidong Li(李卫东)4 |
1 Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 2 Department of Physics, and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China; 3 Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing 401331, China; 4 Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract We study theoretically the nonadiabatic geometric phase of a doubly driven two-level system with an additional relative phase between the two driving modes introduced in. It is shown that the time evolution of the system strongly depends on this relative phase. The condition for the system returning to its initial state after a single period is given by the means of the Landau-Zener-Stückelberg-Majorana destructive interference. The nonadiabatic geometric phase accompanying a cyclic evolution is shown to be related to the Stokes phase as well as this relative phase. By controlling the relative phase, the geometric phase can characterize two distinct phases in the adiabatic limit.
|
Received: 28 May 2022
Revised: 06 August 2022
Accepted manuscript online: 16 August 2022
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
Fund: Project supported by the Special Foundation for theoretical physics Research Program of China (Grant No. 11647165) and the China Postdoctoral Science Foundation Funded Project (Project No. 2020M673118). W.-D.L. acknowledges the funding from the National Natural Science Foundation of China (Grant No. 11874247), the National Key Research and Development Program of China (Grant No. 2017YFA0304500), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. KF201703), and the support from Guangdong Provincial Key Laboratory (Grant No. 2019B121203002). |
Corresponding Authors:
Tao Wang
E-mail: tauwaang@cqu.edu.cn
|
Cite this article:
Weixin Liu(刘伟新), Tao Wang(汪涛), and Weidong Li(李卫东) Nonadiabatic geometric phase in a doubly driven two-level system 2023 Chin. Phys. B 32 050311
|
[1] Berry M V 1984 Proc. R. Soc. London, Ser. A 392 54 [2] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 [3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 [4] Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific) [5] Simon B 1983 Phys. Rev. Lett. 51 2167 [6] Suter D, Mueller K T and Pines A 1988 Phys. Rev. Lett. 60 1218 [7] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339 [8] Mead C A 1992 Rev. Mod. Phys. 64 51 [9] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [10] Tong D M, Singh K, Kwek L C, Fan X J and Oh C H 2005 Phys. Lett. A 339 288 [11] Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889 [12] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [13] Abdel-Khalek S, Berrada K, Mohamed A E S and Abel-Aty M 2013 Chin. Phys. B 22 100301 [14] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402 [15] Sjöqvist E, Pati A K, Ekert A, Anandan J S, Ericsson M, Oi D K L and Vedral V 2000 Phys. Rev. Lett. 85 2845 [16] Carollo A, Fuentes-Guridi I, Santos M F and Vedral V 2003 Phys. Rev. Lett. 90 160402 [17] de Chiara G and Palma G M 2003 Phys. Rev. Lett. 91 090404 [18] Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301 [19] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404 [20] Tan X, Zhang D W, Zhang Z, Yu Y, Han S and Zhu S L 2014 Phys. Rev. Lett. 112 027001 [21] Möttönen M, Vartiainen J J and Pekola J P 2008 Phys. Rev. Lett. 100 177201 [22] Webb C L, Godun R M, Summy G S, Oberthaler M K, Featonby P D, Foot C J and Burnett K 1999 Phys. Rev. A 60 R1783 [23] Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 [24] Abdumalikov Jr A A, Fink J M, Juliusson K, Pechal M, Berger S, Wallraff A and Filipp S 2013 Nature 496 482 [25] Zhang L B, Song C, Wang H H and Zheng S B 2018 Chin. Phys. B 27 070303 [26] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902 [27] Barnes E and Das Sarma S 2012 Phys. Rev. Lett. 109 060401 [28] Kayanuma Y 1997 Phys. Rev. A 55 R2495 [29] Gasparinetti S, Solinas P and Pekola J P 2011 Phys. Rev. Lett. 107 207002 [30] Zhang J, Zhang J, Zhang X and Kim K 2014 Phys. Rev. A 89 013608 [31] Shevchenko S, Ashhab S and Nori F 2010 Phys. Rep. 492 1 [32] Wang L, Tu T, Gong B, Zhou C and Guo G C 2016 Sci. Rep. 6 19048 [33] Ivakhnenko O V, Shevchenko S N and Nori F 2022 ArXiv: 2203.16348 [quant-ph] [34] Wang X B and Matsumoto K J 2001 Phys. Rev. Lett. 87 097901 [35] Ji Y H, Cai S H, Le J X and Wang Z S 2010 Chin. Phys. B 19 010311 [36] Lu X T, Wang T, Li T, Zhou C H, Yin M J, Wang Y B, Zhang X F and Chang H 2021 Phys. Rev. Lett. 127 033601 [37] Shirley J H 1965 Phys. Rev. 138 B979 [38] Eckardt A 2017 Rev. Mod. Phys. 89 011004 [39] Damski B and Zurek W H 2006 Phys. Rev. A 73 063405 [40] Landau L D 1932 Phys. Z. Sowjetunion 2 46 [41] Zener C 1932 Proc. R. Soc. A 137 696 [42] Stückelberg E C G 1932 Helv. Phys. Acta 5 369 [43] Majorana E 1932 Nuovo Cimento 9 43 [44] Militello B D and Vitanov N V 2015 Phys. Rev. A 91 053402 [45] Lehto J and Suominen K A 2012 Phys. Rev. A 86 033415 [46] Liu W X, Wang T, Zhang X F and Li W D 2021 Phys. Rev. A 104 053318 [47] Yin M J, Lu X T, Li T, Xia J J, Wang T, Zhang X F and Chang H 2022 Phys. Rev. Lett. 128 073603 [48] Yin M J, Wang T, Lu X T, Li T, Wang Y B, Zhang X F, Li W D, Smerzi A and Chang H 2021 Chin. Phys. Lett. 38 073201 [49] Sjöqvist E 2008 Physics 1 35 [50] Sjöqvist E 2015 Int. J. Quantum Chem. 115 1311 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|