INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector |
Xu Yan(闫旭)1, Miao Yu(于淼)1,2, Wen-Peng Han(韩文鹏)1, Ming-Hao You(犹明浩)1, Jun-Cheng Zhang(张君诚)1, Rui-Hua Dong(董瑞华)1, Hong-Di Zhang(张红娣)1, Yun-Ze Long(龙云泽)1,3 |
1 Collaborative Innovation Center for Low-Dimensional Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China; 2 Department of Mechanical Engineering, Columbia University, New York 10027, USA; 3 Collaborative Innovation Center for Marine Biomass Fibers, Materials and Textiles of Shandong Province, State Key Laboratory Cultivation Base of New Fiber Materials and Modern Textile, Qingdao University, Qingdao 266071, China |
|
|
Abstract Electrospun nanofibers with designed or controlled structures have drawn much attention. In this study, we report an interesting new closed-loop structure in individual cerium nitrate/polyvinyl alcohol (Ce(NO3)3/PVA) and NaCl/PVA fibers, which are fabricated by electrospinning with a nail collector. The electrospinning parameters such as voltage and Ce(NO3)3 (or NaCl) concentration are examined for the formation of the closed-loop structure. The results suggest that the increase of the spinning voltage or addition of Ce(NO3)3 (or NaCl) is favorable for the formation of the closed-loop structure, and the increase of loop numbers and the decrease of loop size. Further analyses indicate that the formation mechanism of the closed-loop fibers can be predominantly attributed to the Coulomb repulsion in the charged jets.
|
Received: 03 December 2015
Revised: 06 April 2016
Accepted manuscript online:
|
PACS:
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
81.05.Lg
|
(Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51373082 and 11404181), the Taishan Scholars Program of Shandong Province, China (Grant No. ts20120528), and the Postdoctoral Scientific Research Foundation of Qingdao City, China.{These two authors contributed equally to this work. |
Corresponding Authors:
Yun-Ze Long
E-mail: yunze.long@163.com
|
Cite this article:
Xu Yan(闫旭), Miao Yu(于淼), Wen-Peng Han(韩文鹏), Ming-Hao You(犹明浩), Jun-Cheng Zhang(张君诚), Rui-Hua Dong(董瑞华), Hong-Di Zhang(张红娣), Yun-Ze Long(龙云泽) Fabrication and formation mechanism of closed-loop fibers by electrospinning with a tip collector 2016 Chin. Phys. B 25 078106
|
[1] |
Huang Z M, Zhang Y Z, Kotaki M and Ramakrishna S 2003 Compos. Sci. Technol. 63 2223
|
[2] |
Teo W E and Ramakrishna S 2006 Nanotechnology 17 R89
|
[3] |
Greiner A and Wendorff J H 2007 Angew. Chem. Int. Edit. 46 5670
|
[4] |
Bhardwaj N and Kundu S C 2010 Biotechnol. Adv. 28 325
|
[5] |
Lu W, Sun J and Jiang X 2014 J. Mater. Chem. B 2 2369
|
[6] |
Liu C, Hsu P C, Lee H W, Ye M, Zheng G, Liu N, Li W and Cui Y 2015 Nat. Commun. 6 6205
|
[7] |
Vijayakumar E, Subramania A, Fei Z and Dyson P J 2015 RSC Adv. 5 52026
|
[8] |
Chen S, Yu M, Han W P, Yan X, Liu Y C, Zhang J C, Zhang H D, Yu G F and Long Y Z 2014 RSC Adv. 4 46152
|
[9] |
Sun B, Long Y Z, Chen Z J, Liu S L, Zhang H D, Zhang J C and Han W P 2014 J. Mater. Chem. C 2 1209
|
[10] |
Reneker D H, Yarin A L, Fong H and Koombhongse S 2000 J. Appl. Phys. 87 4531
|
[11] |
Yarin A L, Kataphinan W and Reneker D H 2005 J. Appl. Phys. 98 064501
|
[12] |
Reneker D H and Yarin A L 2008 Polymer 49 2387
|
[13] |
Garg K and Bowlin G L 2011 Biomicrofluidics 5 013403
|
[14] |
Theron A, Zussman E and Yarin A L 2001 Nanotechnology 12 384
|
[15] |
Li D, Wang Y and Xia Y 2003 Nano Lett. 3 1167
|
[16] |
Yan H, Liu L, Zhang Z 2009 Appl. Phys. Lett. 95 143114
|
[17] |
Zhang Q, Wang L, Wei Z, Wang X, Long S and Yang J 2012 J. Polym. Sci. B: Polym. Phys. 50 1004
|
[18] |
Wang S H, Wan Y, Sun B, Liu L Z and Xu W J 2014 Nanoscale Res. Lett. 9 1
|
[19] |
Li D, Ouyang G, McCann J T and Xia Y 2005 Nano Lett. 5 913
|
[20] |
Zhang D and Chang J 2007 Adv. Mater. 19 3664
|
[21] |
Zussman E, Theron A and Yarin A L 2003 Appl. Phys. Lett. 82 973
|
[22] |
Liu S L, Long Y Z, Zhang Z H, Zhang H D, Sun B, Zhang J C and Han W P 2013 J. Nanomater. 8 2514103
|
[23] |
Lin D P, He H W, Huang Y Y, Han W P, Yu G F, Yan X, Long Y Z and Xia L H 2014 J. Mater. Chem. C 2 8962
|
[24] |
Sun D, Chang C, Li S and Lin L 2006 Nano Lett. 6 839
|
[25] |
Sun B, Long Y Z, Liu S L, Huang Y Y, Ma J, Zhang H D, Shen G Z and Xu S 2013 Nanoscale 5 7041
|
[26] |
Tang C C, Chen J C, Long Y Z, Yin H X, Sun B and Zhang H D 2011 Chin. Phys. Lett. 28 056801
|
[27] |
Sun Z, Zussman E, Yarin A L, Wendorff J H and Greiner A 2003 Adv. Mater. 15 1929
|
[28] |
Li D and Xia Y 2004 Nano Lett. 4 933
|
[29] |
McCann J T, Li D and Xia Y 2005 J. Mater. Chem. 15 735
|
[30] |
Fong H, Chun I, Reneker D H 1999 Polymer 40 4585
|
[31] |
Megelski S, Stephens J S, Chase D B and Rabolt J F 2002 Macromolecules 35 8456
|
[32] |
Gupta A, Saquing C D, Afshari M, Tonelli A E, Khan S A and Kotek R 2008 Macromolecules 42 709
|
[33] |
Koombhongse S, Liu W and Reneker D H 2001 J. Polym. Sci. B: Polym. Phys. 39 2598
|
[34] |
Li M M, Long Y Z, Yin H X and Zhang Z M 2011 Chin. Phys. B 20 048101
|
[35] |
Joachim C 1998 Europhys. Lett. 42 215
|
[36] |
Reneker D H, Kataphinan W, Theron A, Zussman E and Yarin A L 2002 Polymer 43 6785
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|