Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024203    DOI: 10.1088/1674-1056/26/2/024203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints

Chang-Bin Xue(薛长斌)1,2, Xu-Ri Yao(姚旭日)2, Long-Zhen Li(李龙珍)2, Xue-Feng Liu(刘雪峰)2, Wen-Kai Yu(俞文凯)1, Xiao-Yong Guo(郭晓勇)2, Guang-Jie Zhai(翟光杰)2, Qing Zhao(赵清)1
1 School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Key Laboratory of Electronics and Information Technology for Space System, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We demonstrate that, by undersampling scanning object with a reconstruction algorithm related to compressed sensing, an image with the resolution exceeding the finest resolution defined by the numerical aperture of the system can be obtained. Experimental results show that the measurements needed to achieve sub-Rayleigh resolution enhancement can be less than 10% of the pixels of the object. This method offers a general approach applicable to point-by-point illumination super-resolution techniques.
Keywords:  super-resolution      image reconstruction techniques  
Received:  29 August 2016      Revised:  11 October 2016      Accepted manuscript online: 
PACS:  42.40.Lx (Diffraction efficiency, resolution, and other hologram characteristics)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61605218 and 61601442), the National Defense Science and Technology Innovation Foundation of the Chinese Academy of Sciences (Grant No. CXJJ-16S047), and the National Major Scientific Instruments Development Project of China (Grant No. 2013YQ030595).
Corresponding Authors:  Xu-Ri Yao, Xiao-Yong Guo     E-mail:  yaoxuri@aliyun.com;xyguo@nssc.ac.cn

Cite this article: 

Chang-Bin Xue(薛长斌), Xu-Ri Yao(姚旭日), Long-Zhen Li(李龙珍), Xue-Feng Liu(刘雪峰), Wen-Kai Yu(俞文凯), Xiao-Yong Guo(郭晓勇), Guang-Jie Zhai(翟光杰), Qing Zhao(赵清) Sub-Rayleigh imaging via undersampling scanning based on sparsity constraints 2017 Chin. Phys. B 26 024203

[1] Ash E A and Nicholls G 1972 Nature 237 510
[2] Sheppard C J R and Choudhury A 1977 Optica Acta 24 1051
[3] Mouradian S, Wong F N C and Shapiro J H 2011 Opt. Express 19 5480
[4] Candés E J, Romberg J and Tao T 2006 IEEE Trans. Inform. Theory 52 489
[5] Donoho D 2006 IEEE Trans. Inform. Theory 52 1289
[6] Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F and Baraniuk R G 2008 IEEE Signal Proc. Mag. 25 83
[7] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131110
[8] Yu W K, Li S, Yao X R, Liu X F, Wu L A and Zhai G J 2013 Appl. Opt. 52 7882
[9] Shechtman Y, Gazit S, Szameit A, Eldar Y C and Segev M 2010 Opt. Lett. 35 1148
[10] Szameit A, Shechtman Y, Osherovich E, et al. 2012 Nat. Mater. 11 455
[11] Li L Z, Yao X R, Liu X F, Yu W K and Zhai G J 2014 Acta Phys. Sin. 63 224201 (in Chinese)
[12] Yao X R, Li L J, Liu X F, Yu W K and Zhai G J 2015 Chin. Phys. B 24 044203
[13] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[14] Studer V, Bobin J, Chahid M, Moussavi H, Candés E and Dahan M 2012 Proc. Natl. Acad. Sci. USA 109 1679
[15] Li C B 2010 "An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing," Master Thesis, Rice University
[16] Magalhães F, Araúo F M, Correia M V, Abolbashari M and Farahi F 2011 Appl. Opt. 50 405
[17] Donoho D L and Elad M 2003 Proc. Natl. Acad. Sci. USA 100 2197
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳). Chin. Phys. B, 2022, 31(10): 104205.
[3] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[4] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[5] Terahertz two-pixel imaging based on complementary compressive sensing
Yuye Wang(王与烨), Yuchen Ren(任宇琛), Linyu Chen(陈霖宇), Ci Song(宋词), Changzhao Li(李长昭), Chao Zhang(张超), Degang Xu(徐德刚), Jianquan Yao(姚建铨). Chin. Phys. B, 2018, 27(11): 114204.
[6] STED microscopy based on axially symmetric polarized vortex beams
Zhehai Zhou(周哲海), Lianqing Zhu(祝连庆). Chin. Phys. B, 2016, 25(3): 030701.
[7] Below-diffraction-limited hybrid recording using silicon thin film super-resolution structure
Jiao Xin-Bing(焦新兵), Wei Jing-Song(魏劲松), and Gan Fu-Xi(干福熹). Chin. Phys. B, 2009, 18(12): 5370-5374.
[8] A shaped annular beam tri-heterodyne confocal microscope with good anti-environmental interference capability
Zhao Wei-Qian(赵维谦), Feng Zheng-De(冯政德), and Qiu Li-Rong(邱丽荣). Chin. Phys. B, 2007, 16(6): 1624-1631.
[9] Read-out of a read-only super-resolution optical disc with a Si mask
Wei Jin-Song (魏劲松), Ruan Hao (阮昊), Shi Hong-Ren (施宏仁), Gan Fu-Xi (干福熹). Chin. Phys. B, 2002, 11(10): 1073-1075.
No Suggested Reading articles found!