CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal |
Ji-Peng Wu(伍计鹏)1,2, Yuan-Jiang Xiang(项元江)2, and Xiao-Yu Dai(戴小玉)2,† |
1 College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China; 2 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract We theoretically investigate the reflected spatial Imbert-Fedorov (IF) shift of transverse-electric (TE)-polarized beam illuminating on a bulk Weyl semimetal (WSM). The spatial IF shift is enhanced significantly at two different frequencies close to the epsilon-near-zero (ENZ) frequency, where large values of reflection coefficients $|r_{\rm pp}| / | r_{\rm ss}|$ are obtained due to the ENZ response induced different rapid increasing trends of $|r_{\rm pp}|$ and $| r_{\rm ss}|$. Particularly, the tunable ENZ effect with tilt degree of Weyl cones and Fermi energy enables the enhanced spatial IF shift at different frequencies. The enhanced spatial IF shift also shows the adjustability of WSM thickness, incident angle and Weyl node separation. Our findings provide easy and available methods to enlarge and adjust the reflected IF shift of TE-polarized light with a WSM.
|
Received: 14 May 2022
Revised: 05 July 2022
Accepted manuscript online: 08 July 2022
|
PACS:
|
75.70.Tj
|
(Spin-orbit effects)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875133 and 11874269). |
Corresponding Authors:
Xiao-Yu Dai
E-mail: xiaoyudai@126.com
|
Cite this article:
Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉) Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal 2023 Chin. Phys. B 32 037503
|
[1] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001 [2] Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903 [3] Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L and Wen S C 2017 Rep. Prog. Phys. 80 066401 [4] Hosten O and Kwiat P 2008 Science 319 787 [5] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105 [6] Zhu W G, Xu H Q, Pan J T, Zhang S, Zheng H D, Zhong Y C, Yu J H and Chen Z 2020 Opt. Express 28 25869 [7] Ling X H, Xiao W L, Chen S Z, Zhou X X, Luo H L and Zhou L 2021 Phys. Rev. A 103 033515 [8] Ye G Z, Zhang W S, Wu W J, Chen S Z, Shu W X, Luo H L and Wen S C 2019 Phys. Rev. A 99 023807 [9] Wu J P, Jiang L Y, Zeng R Z, Liang J J, Dai X Y and Xiang Y J 2022 Phys. Rev. A 105 023508 [10] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478 [11] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467 [12] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205 [13] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630 [14] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 [15] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133 [16] Xu B, Qiu Z Y, Yang R, Dai Y M and Qiu X G 2019 Acta Phys. Sin. 68 227804 (in Chinese) [17] Hosur P, Parameswaran S A and Vishwanath A 2012 Phys. Rev. Lett. 108 046602 [18] Ferreiros Y, Zyuzin A A and Bardarson J H 2017 Phys. Rev. B 96 115202 [19] Wilczek F 1987 Phys. Rev. Lett. 58 1799 [20] Wu L, Salehi M, Koirala N, Moon J, Oh S and Armitage N P 2016 Science 354 1124 [21] Kargarian M, Randeria M and Trivedi N 2015 Sci. Rep. 5 12683 [22] Wu J P, Zeng R Z, Liang J J, Jiang L Y and Xiang Y J 2021 J. Appl. Phys. 129 153103 [23] Liu S Q, Song Y F, Wan T, Ke Y G and Luo Z M 2022 Chin. Phys. B 31 074101 [24] Wu J P, Jiang L Y, Dai X Y and Xiang Y J 2022 Phys. Rev. A 105 043519 [25] Wang G Q, Sun Z H, Si X Y and Jia S 2020 Chin. Phys. B 29 077503 [26] Jia G Y, Huang Z X, Ma Q Y and Li G 2020 Nanophotonics 9 715 [27] Liu S Q, Yang C F, Song Y F, Tang P, Ke Y G and Luo Z M 2021 J. Phys. D: Appl. Phys. 54 285108 [28] Liberal I and Engheta N 2017 Nat. Photonics 11 149 [29] Liu X G, Zang K, Kang J H, Park J, Harris J S, Kik P G and Brongersma M L 2018 ACS Photonics 5 4484 [30] Edwards P P, Porch A, Jones M O, Morgan D V and Perks R M 2004 Dalton Trans. 2995 [31] Halterman K, Alidoust M and Zyuzin A 2018 Phys. Rev. B 98 085109 [32] Halterman K and Alidoust M 2019 Opt. Express 27 36164 [33] Chinotti M, Pal A, Ren W J, Petrovic C and Degiorgi L 2016 Phys. Rev. B 94 245101 [34] Xu B, Dai Y M, Zhao L X, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|