Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 037503    DOI: 10.1088/1674-1056/ac7f92
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal

Ji-Peng Wu(伍计鹏)1,2, Yuan-Jiang Xiang(项元江)2, and Xiao-Yu Dai(戴小玉)2,†
1 College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China;
2 College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract  We theoretically investigate the reflected spatial Imbert-Fedorov (IF) shift of transverse-electric (TE)-polarized beam illuminating on a bulk Weyl semimetal (WSM). The spatial IF shift is enhanced significantly at two different frequencies close to the epsilon-near-zero (ENZ) frequency, where large values of reflection coefficients $|r_{\rm pp}| / | r_{\rm ss}|$ are obtained due to the ENZ response induced different rapid increasing trends of $|r_{\rm pp}|$ and $| r_{\rm ss}|$. Particularly, the tunable ENZ effect with tilt degree of Weyl cones and Fermi energy enables the enhanced spatial IF shift at different frequencies. The enhanced spatial IF shift also shows the adjustability of WSM thickness, incident angle and Weyl node separation. Our findings provide easy and available methods to enlarge and adjust the reflected IF shift of TE-polarized light with a WSM.
Keywords:  Imbert-Fedorov shift      Weyl semimetal      epsilon-near-zero      reflection  
Received:  14 May 2022      Revised:  05 July 2022      Accepted manuscript online:  08 July 2022
PACS:  75.70.Tj (Spin-orbit effects)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61875133 and 11874269).
Corresponding Authors:  Xiao-Yu Dai     E-mail:  xiaoyudai@126.com

Cite this article: 

Ji-Peng Wu(伍计鹏), Yuan-Jiang Xiang(项元江), and Xiao-Yu Dai(戴小玉) Enhanced and tunable Imbert-Fedorov shift based on epsilon-near-zero response of Weyl semimetal 2023 Chin. Phys. B 32 037503

[1] Bliokh K Y and Aiello A 2013 J. Opt. 15 014001
[2] Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
[3] Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L and Wen S C 2017 Rep. Prog. Phys. 80 066401
[4] Hosten O and Kwiat P 2008 Science 319 787
[5] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photon. 5 016105
[6] Zhu W G, Xu H Q, Pan J T, Zhang S, Zheng H D, Zhong Y C, Yu J H and Chen Z 2020 Opt. Express 28 25869
[7] Ling X H, Xiao W L, Chen S Z, Zhou X X, Luo H L and Zhou L 2021 Phys. Rev. A 103 033515
[8] Ye G Z, Zhang W S, Wu W J, Chen S Z, Shu W X, Luo H L and Wen S C 2019 Phys. Rev. A 99 023807
[9] Wu J P, Jiang L Y, Zeng R Z, Liang J J, Dai X Y and Xiang Y J 2022 Phys. Rev. A 105 023508
[10] Tan X J and Zhu X S 2016 Opt. Lett. 41 2478
[11] Xiang Y J, Jiang X, You Q, Guo J and Dai X Y 2017 Photon. Res. 5 467
[12] Burkov A A and Balents L 2011 Phys. Rev. Lett. 107 127205
[13] Ju L, Geng B S, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X G, Zettl A, Shen Y R and Wang F 2011 Nat. Nanotechnol. 6 630
[14] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[15] Zyuzin A A and Burkov A A 2012 Phys. Rev. B 86 115133
[16] Xu B, Qiu Z Y, Yang R, Dai Y M and Qiu X G 2019 Acta Phys. Sin. 68 227804 (in Chinese)
[17] Hosur P, Parameswaran S A and Vishwanath A 2012 Phys. Rev. Lett. 108 046602
[18] Ferreiros Y, Zyuzin A A and Bardarson J H 2017 Phys. Rev. B 96 115202
[19] Wilczek F 1987 Phys. Rev. Lett. 58 1799
[20] Wu L, Salehi M, Koirala N, Moon J, Oh S and Armitage N P 2016 Science 354 1124
[21] Kargarian M, Randeria M and Trivedi N 2015 Sci. Rep. 5 12683
[22] Wu J P, Zeng R Z, Liang J J, Jiang L Y and Xiang Y J 2021 J. Appl. Phys. 129 153103
[23] Liu S Q, Song Y F, Wan T, Ke Y G and Luo Z M 2022 Chin. Phys. B 31 074101
[24] Wu J P, Jiang L Y, Dai X Y and Xiang Y J 2022 Phys. Rev. A 105 043519
[25] Wang G Q, Sun Z H, Si X Y and Jia S 2020 Chin. Phys. B 29 077503
[26] Jia G Y, Huang Z X, Ma Q Y and Li G 2020 Nanophotonics 9 715
[27] Liu S Q, Yang C F, Song Y F, Tang P, Ke Y G and Luo Z M 2021 J. Phys. D: Appl. Phys. 54 285108
[28] Liberal I and Engheta N 2017 Nat. Photonics 11 149
[29] Liu X G, Zang K, Kang J H, Park J, Harris J S, Kik P G and Brongersma M L 2018 ACS Photonics 5 4484
[30] Edwards P P, Porch A, Jones M O, Morgan D V and Perks R M 2004 Dalton Trans. 2995
[31] Halterman K, Alidoust M and Zyuzin A 2018 Phys. Rev. B 98 085109
[32] Halterman K and Alidoust M 2019 Opt. Express 27 36164
[33] Chinotti M, Pal A, Ren W J, Petrovic C and Degiorgi L 2016 Phys. Rev. B 94 245101
[34] Xu B, Dai Y M, Zhao L X, Wang K, Yang R, Zhang W, Liu J Y, Xiao H, Chen G F, Taylor A J, Yarotski D A, Prasankumar R P and Qiu X G 2016 Phys. Rev. B 93 121110
[1] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[2] Exploration of growth conditions of TaAs Weyl semimetal thin film using pulsed laser deposition
Shien Li(李世恩), Zefeng Lin(林泽丰), Wei Hu(胡卫), Dayu Yan(闫大禹), Fucong Chen(陈赋聪), Xinbo Bai(柏欣博), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Youguo Shi(石友国), Kui Jin(金魁), Hongming Weng(翁红明), and Haizhong Guo(郭海中). Chin. Phys. B, 2023, 32(4): 047103.
[3] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[4] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[5] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[6] Goos-Hänchen and Imbert-Fedorov shifts in tilted Weyl semimetals
Shuo-Qing Liu(刘硕卿), Yi-Fei Song(宋益飞), Ting Wan(万婷), You-Gang Ke(柯友刚), and Zhao-Ming Luo(罗朝明). Chin. Phys. B, 2022, 31(7): 074101.
[7] Tunable enhanced spatial shifts of reflective beam on the surface of a twisted bilayer of hBN
Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Yu-Qi Zhang(张玉琦), Xiang-Guang Wang(王相光),Shu-Fang Fu(付淑芳), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2022, 31(6): 064207.
[8] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[9] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[10] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[11] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[12] Spin transport properties in ferromagnet/superconductor junctions on topological insulator
Hong Li(李红) and Xin-Jian Yang(杨新建). Chin. Phys. B, 2022, 31(12): 127301.
[13] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[14] Strain-modulated anisotropic Andreev reflection in a graphene-based superconducting junction
Xingfei Zhou(周兴飞), Ziming Xu (许子铭), Deliang Cao(曹德亮), and Fenghua Qi(戚凤华). Chin. Phys. B, 2022, 31(11): 117403.
[15] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
No Suggested Reading articles found!