Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝)1,2, Chen Yang(杨晨)1,2,†, and Gang Jiang(蒋刚)1,2
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Chengdu 610065, China
Abstract In view of the difficulty in calculating the atomic structure parameters of high-Z elements, the Hartree-Fock with relativistic corrections (HFR) theory in combination with the ridge regression (RR) algorithm rather than the Cowan code's least squares fitting (LSF) method is proposed and applied. By analyzing the energy level structure parameters of the HFR theory and using the fitting experimental energy level extrapolation method, some excited state energy levels of the Yb I (Z=70) atom including the 4f open shell are calculated. The advantages of the ridge regression algorithm are demonstrated by comparing it with Cowan code's LSF results. In addition, the results obtained by the new method are compared with the experimental results and other theoretical results to demonstrate the reliability and accuracy of our approach.
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 10822041A2038).
Corresponding Authors:
Chen Yang
E-mail: yangchen@scu.edu.cn
Cite this article:
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚) Ridge regression energy levels calculation of neutral ytterbium (Z = 70) 2023 Chin. Phys. B 32 033101
[1] Ning Y, Jin G Q, Wang M X, Gao S and Zhang J L 2022 Curr. Opin. Chem. Biol.66 102097 [2] Bünzli J C G 2010 Chem. Rev. 110 2729 [3] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [4] Eshkabilov N B, Kurbaniyazov A S and Haidarov S R 2022 Russ. Phys. J. 64 1872 [5] Heugel S, Fischer M, Elman V, Maiwald R, Sondermann M and Leuchs G 2016 J. Phys. B: At. Mol. Opt. 49 015002 [6] Sahoo A C, Mandal P K, Mukherjee J, Dev V and Shah M L 2021 J. Quantum Spectrosc. Radiat. Transfer 276 107944 [7] Xu Y W, Shen L and Dai C J 2018 Mod. Phys. Lett. B 32 1850190 [8] Galindo-Uribarri A, Liu Y, Romero Romero E and Stracener D W 2021 Sci. Rep. 11 23432 [9] Furmann B and Stefanska D 2014 Phys. Scr. 89 095402 [10] Kneip N, Düllmann C E, Gadelshin V, Heinke R, Mokry C, Raeder S, Runke J, Studer D, Trautmann N, Weber F and Wendt K 2020 Hyperfine Interact. 241 45 [11] Block M 2019 Radiochimica Acta 107 821 033101-8 Chin. Phys. B 32, 033101 (2023) [12] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2021 NIST Atomic Spectra Database (version 5.9),[Online]. Available: https://physics.nist.gov/asd[Sat Jul 09 2022]. National Institute of Standards and Technology, Gaithersburg, MD [13] Cowan R D 1968 J. Opt. Soc. Am.58 808 [14] Froese Fischer C, Tachiev G, Gaigalas G and Godefroid M R 2007 Comput. Phys. Commun.176 559 [15] Hibbert A 1975 Comput. Phys. Commun.9 141 [16] Jönsson P, Gaigalas G, Bieron J, Fischer C F and Grant I 2013 Comput. Phys. Commun.184 2197 [17] Gu M F 2008 Can. J. Phys.86 675 [18] Desclaux J P 1975 Comput. Phys. Commun.9 31 [19] Indelicato P, Gorceix O and Desclaux J P 1987 J. Phys. B: At. Mol. Opt.20 651 [20] Indelicato P and Desclaux J P 1990 Phys. Rev. A42 5139 [21] Raassen A J J and Uylings P H M 1996 Phys. Scr.T65 84 [22] Kramida A 2019 Atoms7 64 [23] Liggins F S, Pickering J C, Nave G, Kramida A, Gamrath S and Quinet P 2021 Astrophys. J.907 69 [24] Saloman E B and Kramida A 2017 Astrophys. J., Suppl. Ser.231 18 [25] Saloman E B and Kramida A 2017 Astrophys. J., Suppl. Ser.231 19 [26] Chikh A, Deghiche D, Meftah A, Tchang-Brillet W Ü L, Wyart J F, Balanca C, Champion N and Blaess C 2021 J. Quantum Spectrosc. Radiat. Transfer272 107796 [27] Hoyt C W, Barber Z W, Oates C W, Fortier T M, Diddams S A and Hollberg L 2005 Phys. Rev. Lett.95 083003 [28] King A S 1931 Astrophys. J.74 328 [29] Meggers W F 1942 Rev. Mod. Phys.14 96 [30] Niyaz F, Nunkaew J and Gallagher T F 2019 Phys. Rev. A99 042507 [31] Ternovsky V B, Kuznetsova A A, Ternovsky E V, Mironenko D A and Smirnov A V 2018 J. Phys.: Conf. Ser.1136 012010 [32] Dzuba V A, Flambaum V V and Kozlov M G 2019 Phys. Rev. A99 032501 [33] Hoerl A E and Kennard R W 1970 Technometrics12 55 [34] Cowan R D 1981 The Theory of Atomic Structure and Spectra (University of California Press) [35] Bowers C J, Budker D, Commins E D, DeMille D, Freedman S J, Nguyen A T, Shang S Q and Zolotorev M 1996 Phys. Rev. A53 3103 [36] Wyart J F and Camus P 1979 Phys. Scr.20 43 [37] Baumann M, Braun M and Maier J 1987 Z. Phys. D: At., Mol. Clusters6 275 [38] Meggers W and Tech J 1978 J. Res. Natl. Bur. Stand.83 13 [39] Porsev S G, Safronova M S, Derevianko A and Clark C W 2014 Phys. Rev. A89 012711 [40] Dzuba V A, Berengut J C, Harabati C and Flambaum V V 2017 Phys. Rev. A95 012503 [41] Dzuba V A, Flambaum V V and Schiller S 2018 Phys. Rev. A98 022501
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.