Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 033401    DOI: 10.1088/1674-1056/ac8340
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A theoretical study of fragmentation dynamics of water dimer by proton impact

Zhi-Ping Wang(王志萍)1,†, Xue-Fen Xu(许雪芬)1, Feng-Shou Zhang(张丰收)2, and Xu Wang(王旭)1
1 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China;
2 The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  To investigate the collision processes of proton with the water dimer (H2O)2 at 50 eV, the time-dependent density functional theory coupled with molecular dynamics nonadiabatically is applied. Six specific collision orientations with various impact parameters are considered. The reaction channels, the mass distribution and the fragmentation mass spectrum are explored. Among all launched samples, the probability of the channel of non-charge transfer scattering and charge transfer scattering is about 80%, hinting that the probability of fragmentation is about 20%. The reaction channel of proton exchange process 2 is taken as an example to exhibit the detailed microscopic dynamics of the collision process by inspecting the positions, the respective distance, the number of loss of electrons and the evolution of the electron density. The study of the mass distribution and the fragmentation mass spectrum shows that among all possible fragments, the fragment with mass 36 has the highest relative abundance of 65%. The relative abundances of fragments with masses 1, 35, and 34 are 20%, 13%, and 1.5%, respectively. For the total electron capture cross section, the present calculations agree with the available measurements and calculations over the energy range from 50 eV to 12 keV.
Keywords:  time-dependent density functional theory      water dimer      collision      proton  
Received:  09 May 2022      Revised:  05 July 2022      Accepted manuscript online:  22 July 2022
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  82.30.Fi (Ion-molecule, ion-ion, and charge-transfer reactions)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11905160 and 11635003), the ‘333’ project of Jiangsu Province (Grant No. BRA2020327), and the Science Foundation of Wuxi Institute of Technology (Grant No. ZK201903).
Corresponding Authors:  Zhi-Ping Wang     E-mail:  zpwang03247@163.com

Cite this article: 

Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭) A theoretical study of fragmentation dynamics of water dimer by proton impact 2023 Chin. Phys. B 32 033401

[1] Bolorizadeh M A and Rudd M E 1996 Phys. Rev. A 33 888
[2] Sobocinski P, Pešić Z D, Hellhammer R, Stolterfoht N, Sulik B, Legendre S and Chesnel J Y 2005 J. Phys. B: At. Mol. Opt. Phys. 38 2495
[3] Gobet F, Eden S, Coupier B, Tabet J, Farizon B, Farizon M, Gaillard M J, Carré M, Ouaskit S, Märk T D and Scheier P 2004 Phys. Rev. A 70 062716
[4] Luna H, Montenegro E C 2005 Phys. Rev. Lett. 94 0043201
[5] Seredyuk B, McCullough R W, Tawara H, Gilbody H B, Bodewits D, Hoekstra R, Tielens A G G M, Sobocinski P, Pesic D, Hellhammer R, Sulik B, Stolterfoht N, Abu-Haija O and Kamber E Y 2005 Phys. Rev. A 71 022705
[6] Jorge A, Horbatsch M and Kirchner T 2020 Phys. Rev. A 102 012808
[7] Gu B, Muñoz-Santiburcio D, Pieve F D, Cleri F, Artacho E and Kohanoff J 2022 Radiat. Phys. Chem. 193 109961
[8] Schardt D, Elsässer T and Schulz-Ertner D 2010 Rev. Mod. Phys. 82 383
[9] Boudaïffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Science 287 1658
[10] Teixeira E S, Uppulury K, Privett A J, Stopera C, McLaurin P M and Morales J A 2018 Cancers 10 136
[11] Nikjoo H, Uehara S, Emfletzoglou D and Brahme A 2008 New J. Phys. 10 075006
[12] Koopman D W 1968 Phys. Rev. 166 57
[13] Berkner K H, Pyle R V and Stearns J W 1970 Nucl. Fusion 10 145
[14] Rudd M E, Goffe T V, DuBois R D and Toburen L H 1985 Phys. Rev. A 31 492
[15] Werner U, Beckord K, Becker J and Lutz H O 1995 Phys. Rev. Lett. 74 1962
[16] Lindsay B G, Sieglaff D R, Smith K A and Stebbings R F 1997 Phys. Rev. A 55 3945
[17] Luna H, de Barros A L F, Wyer J A, Scully S W J, Lecointre J, Garcia P M Y, Sigaud G M, Santos A C F, Senthil V, Shah M B, Latimer C J and Montenegro E C 2007 Phys. Rev. A 75 042711
[18] Tavares A C, Luna H, Wolff W and Montenegro E C 2015 Phys. Rev. A 92 032714
[19] Bernal M A, Liendo J A, Incerti S, Francis Z and Tran H N 2022 Nucl. Instrum. Methods Phys. Res. Sect. B 517 6
[20] Deumens E, Diz A, Longgo R and Öhrn Y 1994 Rev. Mod. Phys. 66 917
[21] Shin W G, Ramos-Mendezd J, Trana N H, Okadae S, Perrotf Y, Villagrasaf C and Incerti S 2021 Physica Medica 88 86
[22] Lekadir H, Abbas I, Champion C and Hanssen J 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 1011
[23] Pirkola P and Horbatsch M 2022 Phys. Rev. A 105 032814
[24] Illescas C, Errea L F, Méndez L, Pons B, Rabadán I and Riera A 2011 Phys. Rev. A 83 052704
[25] Lüdde H J, Spranger T, Horbatsch M and Kirchner T 2009 Phys. Rev. A 80 060702
[26] Murakami M, Kirchner T, Horbatsch M and Lüdde H J 2012 Phys. Rev. A 85 052704
[27] Mada S, Hida K N, Kimura M, Pichl L, Liebermann H P, Li Y and Buenker R J 2007 Phys. Rev. A 75 022706
[28] Dingfelder M, Inokuti M and Paretzke H G 2000 Radiat. Phys. Chem. 59 255
[29] Gabás P M M, Errea L F, Méndez L and Rabadán I 2012 Phys. Rev. A 85 012702
[30] Zhao R T, Zhang N and Zhang F S 2018 Mol. Phys. 116 231
[31] Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y and Wei B 2018 Phys. Rev. A 97 032706
[32] Hong X H, Wang F, Wu Y, Gou B C and Wang J G 2016 Phys. Rev. A 93 062706
[33] Stillinger F H 1980 Science 209 451
[34] Björneholm O, Federmann F, Kakar S and Möller T 1999 J. Chem. Phys. 111 546
[35] See http://www.lpt.ups-tlse.fr/cluster-dynamics/ for the information about the TDDFT-MD model
[36] Dinh P M, Vincendon M, Coppens F, Suraud E and Reinhard P G 2022 Comput. Phys. Commun. 270 108155
[37] Calvayrac F, Reinhard P G, Suraud E and Ullrich C A 2000 Phys. Rep. 337 493
[38] Fennel Th, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M and Suraud E 2010 Rev. Mod. Phys. 82 1793
[39] Gao C Z, Wang J, Wang F and Zhang F S 2014 J. Chem. Phys 140 054308
[40] Gao C Z, Wang J and Zhang F S 2013 Nucl. Instrum. Methods Phys. Res. Sect. B 307 225
[41] Wang Z P, Dinh P M, Reinhard P G, Suraud E, Bruny G, Montano C, Feil S, Eden S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2011 Int. J. Mass. Spectrom. 285 143
[42] Wang Z P, Zhang F S, Xu X F and Qian C Y 2020 Chin. Phys. B 29 023401
[43] Ndongmouo-Taffoti U F, Dinh P M, Reinhard P G, Suraud E and Wang Z P 2010 Eur. Phys. J. D 58 131
[44] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[45] Marques M A L and Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427
[46] Goedecker S, Teter M and J Hutter 1996 Phys. Rev. B 54 1703
[47] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[48] Legrand C, Suraud E and Reinhard P G 2002 J. Phys. B 35 1115
[49] Ullrich C A 2000 J. Mol. Struct. (THEOCHEM) 501-502 315
[50] Yu W, Zhang Y, Zhang F S, Hutton R, Zou Y, Gao C Z and Wei B 2018 J. Phys. B: At. Mol. Opt. Phys. 51 035204
[51] Wang Z P, Zhang F S, Xu X F, Wang Y B and Qian C Y 2019 Mod. Phys. Lett. B 33 1950257
[52] Rao M V V S, Iga I and Srivastava S K 1995 J. Geophys. Res. 100 26421
[53] Cable P G 1967 University of Maryland Technical Note No. BN-499 (unpublished)
[54] Dagnac R, Blanc D and Molina D 1970 J. Phys. B 3 1239
[55] Belkić D, Mančev I and Hanssen J 2008 Rev. Mod. Phys. 80 249
[1] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[2] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[6] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[7] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[8] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[9] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[10] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[11] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[12] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[13] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[14] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[15] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
No Suggested Reading articles found!