Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024207    DOI: 10.1088/1674-1056/ac8f3e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser

Zhiguo Lv(吕志国)1, Hao Teng(滕浩)2,3,†, and Zhiyi Wei(魏志义)2,3,4,‡
1 School of Physical Science and Technology, Inner Mongolia Key Laboratory of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot 010021, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report a high-average-power noise-like pulse (NLP) and dissipative soliton (DS) pulse fiber laser. Average power as high as 4.8 W could be obtained at the fundamental mode-locked repetition rate. The NLP can also be transformed into a more powerful DS mode-locking state by optimizing the polarization and losses of intra-cavity pulses in the nonlinear polarization evolution regime. The operation mode between the NLP and DS can be switched, and the laser output performance in both modes has been studied. The main advantage of this work is switchable high-power operation between the NLP and DS. In comparison with conventional single-mode NLP fiber lasers, the multi-function high-power optical source will greatly push its application in supercontinuum generation, coherence tomography, and industrial processing.
Keywords:  cladding pumping      high power      noise-like pulse      dissipative soliton  
Received:  21 April 2022      Revised:  05 August 2022      Accepted manuscript online:  05 September 2022
PACS:  42.55.-f (Lasers)  
  42.55.Wd (Fiber lasers)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12164030), the Major Program of the National Natural Science Foundation of China (Grant No. 12034020), Young Science and Technology Talents of Inner Mongolia, China (Grant No. NJYT22101), and the Talent Development Fund of Inner Mongolia, China.
Corresponding Authors:  Hao Teng, Zhiyi Wei     E-mail:  hteng@iphy.ac.cn;zywei@iphy.ac.cn

Cite this article: 

Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义) A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser 2023 Chin. Phys. B 32 024207

[1] Liang C B, Song Y R, Dong Z K, Wu Y F, Tian J R and Xu R Q 2020 Chin. Phys. B 29 074206
[2] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[3] Zhao J Q, Zhou J, Li L, Klimczak M, Komarov A, Su L, Tang D Y, Shen D Y and Zhao L M 2019 Opt. Express 27 29770
[4] Gao J J, Ning T Y, Liu Y J, Shang X X, Han X L, Guo Q X, Guo L G, Lu Z Y, Wang Z H, Zhang H J and Jiang S Z 2019 Appl. Opt. 58 7897
[5] Sulimany K, Lib O, Masri G, Klein A, Fridman M, Grelu P, Gat O, Steinberg H 2018 Phys. Rev. Lett. 121 133902
[6] Stratmann M, Pagel T and Mitshke F 2005 Phys. Rev. Lett. 95 143902
[7] Li D J, Li L, Zhou J Y, Zhao L M, Tang D Y and Shen D Y 2016 Sci. Rep. 6 23631
[8] Gurevich S V, Schelte C and Javaloyes J 2019 Phys. Rev. A 99 061803
[9] Klein A, Masri G, Duadi H, Sulimany K, Lib O, Steinberg H, Kolpakov S A and Fridman M 2018 Optica 5 774
[10] Andy C, Willian H R and Frank W W 2008 J. Opt. Soc. Am. B 25 140
[11] Wang X F, Xia Q and Gu B 2019 Opt. Commun. 434 180
[12] Horowitz M, Barad Y and Silberberg Y 1997 Opt. Lett. 22 799
[13] Li D J, Shen D Y, Li L, Chen H, Tang D Y and Zhao L M 2015 Opt. Express 23 25889
[14] Li X L, Zhang S M, Han M M and Liu J M 2017 Opt. Lett. 42 4203
[15] Li J F, Zhang Z X, Sun Z Y, Luo H Y, Liu Y, Yan Z J, Mou C B, Zhang L and Turitsyn S K 2014 Opt. Express 22 7875
[16] Wu T Y, Dou Z Y, Zhang B and Hou J 2020 Chin. Phys. B 29 014202
[17] Li J F, Yan Z J, Sun Z Y, Luo H Y, He Y L, Li Z, Liu Y and Zhang L 2014 Opt. Express 22 31020
[18] Chen Y, Wu M, Tang P H, Chen S Q, Du J, Jiang G B, Li Y, Zhao C J, Zhang H and Wen S C 2014 Laser Phys. Lett. 11 055101
[19] Tang D Y, Zhao L M and Zhao B 2005 Opt. Express 13 2289
[20] Zhao L M, Tang D Y, Wu J, Fu X Q and Wen S C 2007 Opt. Express 15 2145
[21] Kobtsev S, Kukarin S, Smirnov S, Turitsyn S and Latkin A 2009 Opt. Express 17 20707
[22] Hernandez H S, Pottiez O, Sanchez M D, Tamayo R I A, Cruz J P L, Hernandez J C, Escamilla B I and Kuzin E A 2015 Opt. Express 23 18840
[23] Sanchez E G, Pottiez O, Rodriguez Y B, Cruz J P L, Villalon H E I, Garcia J C H, Jimenez M B and Kuzin E A 2016 Opt. Express 24 18917
[24] Luo X, Tuan T H, Saini T S, Nguyen H P T, Suzuki T and Ohishi Y 2019 IEEE Photo. Tech. Lett. 31 1225
[25] Ozgören K, Öktem B, Yilmaz S, IIday F Ö and Eken K 2011 Opt. Express 19 1764
[26] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A and Fujimoto J G 1991 Science 254 1178
[27] Wang X, Komarov A, Klimczak M, Su L, Tang D Y, Shen D Y, Li L and Zhao L M 2019 Opt. Express 27 24147
[28] Boucon A, Barvlau B, Fatome J, Finot C, Sylvestre T, Lee M W, Grelu P and Millot G 2012 Appl. Phys. B 106 283
[29] Lv Z G, Teng H, Wang L N, Wang R and Wei Z Y 2015 Chin. Phys. Lett. 32 084201
[30] Chen H, Chen S P, Jiang Z F and Hou J 2015 Opt. Lett. 40 5490
[31] Lv Z G, Teng H, Wang L N, Wang R, Wang J L and Wei Z Y 2015 Chin. Phys. B 24 114203
[32] Lv Z G, Teng H, Wang L N, Wang J L and Wei Z Y 2016 Chin. Phys. B 25 094208
[33] Lv Z G, Yang Z, Yang X J, Li F, Li Q L, Wang Y S, Zhao W and Wei Y F 2018 Laser Phys. Lett. 15 115109
[1] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[2] High power semiconductor laser array with single-mode emission
Peng Jia(贾鹏), Zhi-Jun Zhang(张志军), Yong-Yi Chen(陈泳屹), Zai-Jin Li(李再金), Li Qin(秦莉), Lei Liang(梁磊), Yu-Xin Lei(雷宇鑫), Cheng Qiu(邱橙), Yue Song(宋悦), Xiao-Nan Shan(单肖楠), Yong-Qiang Ning(宁永强), Yi Qu(曲轶), and Li-Jun Wang(王立军). Chin. Phys. B, 2022, 31(5): 054209.
[3] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[4] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[5] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[6] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[7] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[8] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[9] Modes decomposition in particle-in-cell software CEMPIC
Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥). Chin. Phys. B, 2020, 29(10): 100205.
[10] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[11] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[12] High power external-cavity surface-emitting laser with front and end pump
Lidan Jiang(蒋丽丹), Renjiang Zhu(朱仁江), Maohua Jiang(蒋茂华), Dingke Zhang(张丁可), Yuting Cui(崔玉亭), Peng Zhang(张鹏), Yanrong Song(宋晏蓉). Chin. Phys. B, 2018, 27(8): 084205.
[13] A low-outgassing-rate carbon fiber array cathode
An-Kun Li(李安昆), Yu-Wei Fan(樊玉伟), Bao-Liang Qian(钱宝良), Zi-Cheng Zhang(张自成), Tao Xun(荀涛). Chin. Phys. B, 2018, 27(2): 028401.
[14] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
[15] Bow shocks formed by a high-speed laser-driven plasma cloud interacting with a cylinder obstacle
Yan-Fei Li(李彦霏), Yu-Tong Li(李玉同), Da-Wei Yuan(袁大伟), Fang Li(李芳), Bao-Jun Zhu(朱保君), Zhe Zhang(张喆), Jia-Yong Zhong(仲佳勇), Bo Han(韩波), Hui-Gang Wei(魏会冈), Xiao-Xing Pei(裴晓星), Jia-Rui Zhao(赵家瑞), Chang Liu(刘畅), Xiao-Xia Yuan(原晓霞), Guo-Qian Liao(廖国前), Yong-Joo Rhee, Xin Lu(鲁欣), Neng Hua(华能), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Zhi-Heng Fang(方智恒), Xiu-Guang Huang(黄秀光), Si-Zu Fu(傅思祖), Gang Zhao(赵刚), Jie Zhang(张杰). Chin. Phys. B, 2017, 26(5): 055202.
No Suggested Reading articles found!