Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 024206    DOI: 10.1088/1674-1056/ac7862
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optomagnonically tunable whispering gallery cavity laser wavelength conversion

Yining Zhu(朱奕宁)1, Zixu Zhu(朱子虚)2, Anbang Pei(裴安邦)2, and Yong-Pan Gao(高永潘)3,†
1 International School, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We achieve laser wavelength conversion in an optomagnonical whispering gallery cavity by adjusting the strength of the applied static magnetic field. Numerical simulations are carried out on a yttrium iron garnet (YIG) sphere under different cavity quality factors or coupling strength. It is found that a high cavity quality factor will not always mean a high cavity excitation field for Gaussian lasers with finite linewidth. On state of the art, the high cavity quality factor will always mean the higher lightwave conversion rate. In addition, we also find that increasing the mode coupling strength is beneficial to the conversion of the laser. Our study provides new insights into generation of highly precise tunable coherent light.
Keywords:  cavity optomagnonics      YIG sphere      laser modulation  
Received:  03 April 2022      Revised:  05 June 2022      Accepted manuscript online:  14 June 2022
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.82.Fv (Hybrid systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62101057).
Corresponding Authors:  Yong-Pan Gao     E-mail:  gaoyongpan@bupt.edu.cn

Cite this article: 

Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘) Optomagnonically tunable whispering gallery cavity laser wavelength conversion 2023 Chin. Phys. B 32 024206

[1] Bloch F 1930 Z. Phys. 61 206219
[2] Goryachev M, Farr W G, Creedon, D L, Fan Y H, Kostylev M and Tobar M E 2014 Phys. Rev. Appl. 2 054002
[3] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R and Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003
[4] Zhang X F, Zou C L, Jiang L and Tang H X 2014 Phys. Rev. Lett. 113 156401
[5] Lachance-Quirion D, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R and Nakamura Y 2017 Sci. Adv. 3 e1603150
[6] Li J, Zhu S Y and Agarwal G S 2018 Phys. Rev. Lett. 121 203601
[7] Zhang X F, Zou C L, Jiang L and Tang H X 2016 Sci. Adv. 2 e1501286
[8] Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y and Usami K 2018 Phys. Rev. Lett. 120 133602
[9] Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M and Nakamura Y 2016 Phys. Rev. Lett. 116 223601
[10] Zhang X F, Zhu N, Zou C L and Tang H X 2016 Phys. Rev. Lett. 117 123605
[11] Chai C Z, Shen Z, Zhang Y L, Zhao H Q, Guo G C, Zou C L and Dong C H 2022 Photon. Res. 10 820
[12] Liu T Y, Zhang X F, Tang H X and Flatté M E 2016 Phys. Rev. B 94 060405
[13] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q and Hu C M 2019 Phys. Rev. Lett. 123 127202
[14] Zhang D K, Luo X Q, Wang Y P, Li T F and You J Q 2017 Nat. Commun. 8 1368
[15] Gao Y P, Liu X F, Wang T J, Cao C and Wang C 2019 Phys. Rev. A 100 043831
[16] Bourhill J, Kostylev N, Goryachev M, Creedon D and Tobar M E 2016 Phys. Rev. B 93 144420
[17] Ding M S, Zheng L and Li C 2020 J. Opt. Soc. Am. B 37 627
[18] Liu Z X, You C, Wang B, Xiong H and Wu Y 2019 Opt. Lett. 44 507
[19] Proskurin I, Ovchinnikov A S, Kishine J I and Stamps R L 2018 Phys. Rev. B 98 220411
[20] Wang M, Zhang D, Li X H, W Y Y and Sun Z Y 2019 IEEE Photon. J. 11 5300108
[21] Xu W L, Liu, X F, Sun Y, Gao Y P, Wang T J and Wang C 2020 Phys. Rev. E 101 012205
[22] Zhang G Q and You J Q 2019 Phys. Rev. B 99 054404
[23] Zhang G Q, Wang Y P and You J Q Sci. China Phys. Mech. 62 987511
[24] Kobayashi N, Ikeda K, Gu B, Takahashi S, Masumoto H and Maekawa S 2018 Sci. Rep. 8 4978
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[4] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[5] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[6] High-efficiency photon-electron coupling resonant emission in GaN-based microdisks on Si
Menghan Liu(刘梦涵), Peng Chen(陈鹏), Zili Xie(谢自力), Xiangqian Xiu(修向前), Dunjun Chen(陈敦军), Bin Liu(刘斌), Ping Han(韩平), Yi Shi(施毅), Rong Zhang(张荣), Youdou Zheng(郑有炓), Kai Cheng(程凯), Liyang Zhang(张丽阳). Chin. Phys. B, 2020, 29(8): 084203.
[7] Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm
Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华). Chin. Phys. B, 2018, 27(11): 117701.
[8] Research progress of low-dimensional metal halide perovskites for lasing applications
Zhen Liu(刘镇), Chun Li(李淳), Qiu-Yu Shang(尚秋宇), Li-Yun Zhao(赵丽云), Yang-Guang Zhong(钟阳光), Yan Gao(高燕), Wen-Na Du(杜文娜), Yang Mi(米阳), Jie Chen(陈杰), Shuai Zhang(张帅), Xin-Feng Liu(刘新风), Ying-Shuang Fu(付英双), Qing Zhang(张青). Chin. Phys. B, 2018, 27(11): 114209.
[9] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[10] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[11] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[12] Microscale vortex laser with controlled topological charge
Xing-Yuan Wang(王兴远), Hua-Zhou Chen(陈华洲), Ying Li(黎颖), Bo Li(李波), Ren-Min Ma(马仁敏). Chin. Phys. B, 2016, 25(12): 124211.
[13] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[14] Dynamical properties of total intensity fluctuation spectrum in two-mode Nd:YVO4 microchip laser
Zhang Shao-Hui (张韶辉), Zhang Shu-Lian (张书练), Tan Yi-Dong (谈宜东), Sun Li-Qun (孙利群). Chin. Phys. B, 2015, 24(12): 124203.
[15] Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser
Li Chao-Ran (李超然), Dai Shi-Xun (戴世勋), Zhang Qin-Yuan (张勤远), Shen Xiang (沈祥), Wang Xun-Si (王训四), Zhang Pei-Qing (张培晴), Lu Lai-Wei (路来伟), Wu Yue-Hao (吴越豪), Lv She-Qin (吕社钦). Chin. Phys. B, 2015, 24(4): 044208.
No Suggested Reading articles found!