Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 085202    DOI: 10.1088/1674-1056/27/8/085202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge

Ahmed Asaad I Khalil1,4, Reem Al-Tuwirqi2, Mohammed A Gondal3, Noura Al-Suliman4
1 Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences(NILES), Cairo University, Giza, 12613 Egypt;
2 Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia;
3 Department of Physics, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia;
4 Department of Physics, Faculty of Science for Girls, Imam Abdulrahman Ben Faisal University, Dammam 31441, Saudi Arabia
Abstract  

We report on the observation of new fluorescence emission spectral transitions obtained from NO diatomic molecule in the region from ultraviolet (UV) to near infrared (NIR) in a low power glow discharge system. This glow discharge electronic excitation populates different quartet and doublet states of NO in its proximity such as the A2Σ (υ=2), b4Σ- (υ=3), B2Π (υ=4), and X2Π (υ=33-32) states. Due to inter-system crossing, emission lines originating from these levels to lower lying states are recorded and spectral line assignments are performed. The observed systems include b4Σ--a4Π, B2Π-a4Π, a4Π-X2Π, A2Σ-X2Π, X2Π-X2Π (33-15), X2Π-X2Π (33-17), X2Π-X2Π (33-20), and X2Π-X2Π (33-18). This new information will conduce to the better understanding of the interesting features of NO molecule. Such parameters that affect the recording of low density of NO molecules are also discussed In addition to the factors such as the time evolution, argon gas concentration relative to NO mixture, the percentage of NO molecular gas concentration, discharge electric current signals and discharge applied voltage are studied. Those factors would enhance the fluorescence signal intensity of NO molecules. The recent results might be significant as reference data for optimizing the glow discharge spectrometer and diagnostics of NO gas.

Keywords:  fluorescence emission      NO molecule      quartet states      intersystem crossing      glow discharge  
Received:  09 April 2018      Revised:  18 May 2018      Accepted manuscript online: 
PACS:  52.38.Mf (Laser ablation)  
  52.25.Jm (Ionization of plasmas)  
  52.25.Kn (Thermodynamics of plasmas)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
Fund: 

Project supported by the Funds from Laser Sciences and Interactions Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza, Egypt; the Fund from the Department of Physics, Faculty of Science for Girls, Imam Abdulrahman Ben Faisal University (x-Dammam University), the Fund from Dammam 31441, Saudi Arabia, and the Physics Department of King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia.

Corresponding Authors:  Ahmed Asaad I Khalil     E-mail:  Ahmedasaad68@yahoo.com,Ahmedasaad@niles.edu.eg

Cite this article: 

Ahmed Asaad I Khalil, Reem Al-Tuwirqi, Mohammed A Gondal, Noura Al-Suliman Factors affecting improvement of fluorescence intensity of quartet and doublet state of NO diatomic molecule excited by glow discharge 2018 Chin. Phys. B 27 085202

[1] Cohen M F, Mazzola M and Yamasaki H 2006 “Nitric Oxide Research in Agriculture”, in Bridging the Plant and Bacterial Realms, eds. Ashwani K Rai and Teruhiro Takabe (The Netherlands: Springer Press) p. 71
[2] Corker H and Poole R K 2003 J. Biol. Chem. 278 31584
[3] D Serca, R Delmas, Le Roux X, Parsons D A B, Scholes M C, Abbadie L, Lensi R, Ronce O and Labroue L 1998 Global Biogeochemical Cycles 12 637
[4] McClenny W A, Williams E J, Cohen R C and Stutz J 2002 J. Air and Waste Manage. Assoc. 52 542
[5] Knowles G and Moncada S 1994 Biochem. J. 298 249
[6] Moncada S, Palmer R M J and Higgs E A 1991 Pharmacol Rev. 43 109
[7] Dingle T W, Freedman P A, Gelernt B, Jones W J and Smith I W M 1975 Chem. Phys. 8 171
[8] Dünnwald H, Siegel E and Urban W 1985 Chem. Phys. 94 195
[9] Rottke H and Zacharias H 1985 J. Chem. Phys. 83 4831
[10] Luque J and Crosley D R 1995 J. Quantum Spectrosc. Radiat. Transfer 53 89
[11] Brunger M J, Campbell L, Cartwright D C, Middleton A G, Mojarrabi B and Teubner P J O 2000 J. Phys. B: At. Mol. Opt. Phys. 33 809
[12] Zhang G, Jin W and Zhang H 2013 J. Quantum Spectrosc. Rad. Transfer 127 90
[13] Takazawa K 2004 J. Mol. Spectrosc. 223 120
[14] Reddy R R, Ahammed Y N, Basha D B, Narasimhulu K, Reddy L S S and Gopal K R 2006 J. Quantum Spectrosc. Rad. Transfer 97 344
[15] Poland H M and Broida H P 1971 J. Quantum Spectrosc. Rad. Transfer 11 1863
[16] Danielak J, Domin U, Kepa R and Zachwieja M R 1997 J. Mol. Spectrosc. 181 394
[17] Simeonsson J B, Elwood S A, Niebes M, Carter R and Peck A 1999 Analy. Chim. Acta 397 33
[18] Mitscherling C, Maul C, Veselov A A and Gericke K H 2009 Isotopes in Environmental and Health Studies 45 59
[19] Diez-Y-Riega H and Eilers H 2012 Appl. Phys. B 108 189
[20] Khalil A A I, Morsy M A and El-Deen H Z 2017 Opt. Laser Technol. 96 227
[21] Khalil A A I, Hafez A I, Elgohary M E and M A Morsy 2017 Chin. Phys. B 26 095201
[22] Brook M and Kaplan J 1954 Phys. Rev. 96 1540
[23] Vichon D, Hall R I, Gresteau F and Mazeau J 1978 J. Mol. Spectrosc. 69 341
[24] Möhlmann G R and DeHeer F J 1977 Chem. Phys. Lett. 49 588
[25] Frueholz R P, Rianda R and Kuppermann A 1978 J. Chem. Phys. 68 775
[26] Campbell I M and Mason R S 1979 J. Photochem. 11 53
[27] Miescher E 1980 J. Chem. Phys. 73 3088
[28] Huber K P and Vervloet M 1988 J. Mol. Spectrosc. 29 1
[29] Bachir H, Charneau R and Dubost H 1993 Chem. Phys. 177 675
[30] Foth H J, Polanyi J C and Telle H H 1982 J. Phys. Chem. 86 5027
[31] Khalil A A I, Younis W O and Gandol M A 2017 Indian J. Phys. 91 327
[32] Al-Tuwirqi R, Al-Suliman N, Khalil A A I and Gandol M 2012 Mol. Phys. 110 2951
[33] Wang C C, Davis L I Jr, Wu C H and Japar S 1976 Appl. Phys. Lett. 28 14
[34] Georges J, Arnaud N and Parise L 1996 Appl. Spectrosc. 50 1505
[35] Faris G W, Copeland R A, Mortelmans K and Bronk B V 1997 Appl. Opt. 36 958
[36] Kaye P, Stanley W R, Hirst E, Foot E V, Baxter K L and Barrington S J 2005 Opt. Express 13 3583
[1] Numerical study on discharge characteristics influenced by secondary electron emission in capacitive RF argon glow discharges by fluid modeling
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2018, 27(2): 025201.
[2] Numerical study on the gas heating mechanism in pulse-modulated radio-frequency glow discharge
Qi Wang(王奇), Xiao-Li Yu(于晓丽), De-Zhen Wang(王德真). Chin. Phys. B, 2017, 26(3): 035201.
[3] Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Lu-Lu Zhao(赵璐璐), Yue Liu(刘悦), Tagra Samir. Chin. Phys. B, 2017, 26(12): 125201.
[4] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[5] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[6] Optimum fluorescence emission around 1.8 μm for LiYF4 single crystals of various Tm3+-doping concentrations
Li Shan-Shan (李珊珊), Xia Hai-Ping (夏海平), Fu Li (符立), Dong Yan-Ming (董艳明), Gu Xue-Mei (谷雪梅), Zhang Jian-Li (章践立), Wang Dong-Jie (王冬杰), Zhang Yue-Pin (张约品), Jiang Hao-Chuan (江浩川), Chen Bao-Jiu (陈宝玖). Chin. Phys. B, 2014, 23(10): 107806.
[7] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
[8] Surface modification of polytetrafluoroethylene film using single liquid electrode atmospheric- pressure glow discharge
Zhou Lan(周澜), Lü Guo-Hua(吕国华), Chen Wei(陈维), Pang Hua(庞华), Zhang Gu-Ling(张谷令), and Yang Si-Ze(杨思泽) . Chin. Phys. B, 2011, 20(6): 065206.
[9] Characterizing uniform discharge in atmospheric helium by numerical modelling
Lü Bo(吕博), Wang Xin-Xin(王新新), Luo Hai-Yun(罗海云), and Liang Zhuo(梁卓). Chin. Phys. B, 2009, 18(2): 646-651.
[10] Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes
Zhang Hong-Yan(张红艳), Wang De-Zhen(王德真), and Wang Xiao-Gang(王晓钢). Chin. Phys. B, 2007, 16(4): 1089-1096.
[11] Simulation of radio-frequency atmospheric pressure glow discharge in $\gamma$ mode
Shang Wan-Li(尚万里), Wang De-Zhen(王德真), and Michael G. Kong. Chin. Phys. B, 2007, 16(2): 485-492.
[12] Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles
Gao Dang-Li(高当丽), Zhang Xiang-Yu(张翔宇), and Zheng Hai-Rong(郑海荣). Chin. Phys. B, 2007, 16(10): 3134-3137.
[13] Spatial distribution of electron characteristic in argon rf glow discharges
Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳). Chin. Phys. B, 2006, 15(5): 969-974.
[14] A new method of measuring the spatial distribution of depletion fraction of silane plasma by mass spectrometer
Wang Zhao-Kui (王照奎), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Zhu Zu-Song (祝祖送). Chin. Phys. B, 2005, 14(7): 1413-1417.
[15] Glow and pseudo-glow discharges in a surface discharge generator
Li Xue-Chen (李雪辰), Dong Li-Fang (董丽芳), Wang Long (王龙). Chin. Phys. B, 2005, 14(7): 1418-1422.
No Suggested Reading articles found!