|
|
Variational quantum eigensolvers by variance minimization |
Dan-Bo Zhang(张旦波)1,2,†, Bin-Lin Chen(陈彬琳)2, Zhan-Hao Yuan(原展豪)3, and Tao Yin(殷涛)4,‡ |
1 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China; 2 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; 3 Guangzhou Educational Infrastructure and Equipment Center, Guangzhou 510006, China; 4 Yuntao Quantum Technologies, Shenzhen 518000, China |
|
|
Abstract The original variational quantum eigensolver (VQE) typically minimizes energy with hybrid quantum-classical optimization that aims to find the ground state. Here, we propose a VQE based on minimizing energy variance and call it the variance-VQE, which treats the ground state and excited states on the same footing, since an arbitrary eigenstate for a Hamiltonian should have zero energy variance. We demonstrate the properties of the variance-VQE for solving a set of excited states in quantum chemistry problems. Remarkably, we show that optimization of a combination of energy and variance may be more efficient to find low-energy excited states than those of minimizing energy or variance alone. We further reveal that the optimization can be boosted with stochastic gradient descent by Hamiltonian sampling, which uses only a few terms of the Hamiltonian and thus significantly reduces the quantum resource for evaluating variance and its gradients.
|
Received: 23 May 2022
Revised: 16 August 2022
Accepted manuscript online: 18 August 2022
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 12005065) and the Guangdong Basic and Applied Basic Research Fund (Grant No. 2021A1515010317). |
Corresponding Authors:
Dan-Bo Zhang, Tao Yin
E-mail: dbzhang@m.scnu.edu.cn;tao.yin@artiste-qb.net
|
Cite this article:
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛) Variational quantum eigensolvers by variance minimization 2022 Chin. Phys. B 31 120301
|
[1] Yung M H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A and Solano E 2014 Sci. Rep. 4 3589 [2] Farhi E, Goldstone J and Gutmann S 2014 arXiv:1411.4028 [3] McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys. 18 023023 [4] Li Y and Benjamin S C 2017 Phys. Rev. X 7 021050 [5] McClean J R, Kimchi-Schwartz M E, Carter J and de Jong W A 2017 Phys. Rev. A 95 042308 [6] Shen Y, Zhang X, Zhang S, Zhang J N, Yung M H and Kim K 2017 Phys. Rev. A 95 020501 [7] Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242 [8] Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru- Guzik A, Blatt R and Roos C F 2018 Phys. Rev. X 8 031022 [9] Anschuetz E R, Olson J P, Aspuru-Guzik A and Cao Y 2018 arXiv:1808.08927 [10] Mitarai K, Negoro M, Kitagawa M and Fujii K 2018 Phys. Rev. A 98 032309 [11] Moll N, Barkoutsos P, Bishop L S, Chow J M, Cross A, Egger D J, Filipp S, Fuhrer A, Gambetta J M, Ganzhorn M, Kandala A, Mezzacapo A, Müller P, Riess W, Salis G, Smolin J, Tavernelli I and Temme K 2018 Quantum Sci. Technol. 3 030503 [12] Endo S, Sun J, Li Y, Benjamin S C and Yuan X 2020 Phys. Rev. Lett. 125 010501 [13] Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355 [14] Takeshita T, Rubin N C, Jiang Z, Lee E, Babbush R and McClean J R 2020 Phys. Rev. X 10 011004 [15] McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Inf. 5 75 [16] Higgott O, Wang D and Brierley S 2019 Quantum 3 156 [17] Wu J and Hsieh T H 2019 Phys. Rev. Lett. 123 220502 [18] Verdon G, Broughton M, McClean J R, Sung K J, Babbush R, Jiang Z, Neven H and Mohseni M 2019 arXiv:1907.05415 [19] Liu J G, Zhang Y H, Wan Y and Wang L 2019 Phys. Rev. Res. 1 023025 [20] Liu J G, Mao L, Zhang P and Wang L 2021 Mach. Learn.: Sci. Technol. 2 025011 [21] Benedetti M, Lloyd E, Sack S and Fiorentini M 2019 Quantum Sci. Technol. 4 043001 [22] Grimsley H R, Economou S E, Barnes E and Mayhall N J 2019 Nat. Commun. 10 3007 [23] Zhang D B and Yin T 2020 Phys. Rev. A 101 032311 [24] Yuan Z H, Yin T and Zhang D B 2021 Phys. Rev. A 103 012413 [25] Arute F 2020 rXiv:2004.04174 [26] Xu X, Sun J, Endo S, Li Y, Benjamin S C and Yuan X 2021 Sci. Bull. 66 2181 [27] Lubasch M, Joo J, Moinier P, Kiffner M and Jaksch D 2020 Phys. Rev. A 101 010301 [28] Greene-Diniz G and Ramo D M 2019 rXiv:1910.05168 [29] Nakanishi K M, Mitarai K and Fujii K 2019 Phys. Rev. Res. 1 033062 [30] Bartlett J H, Gibbons J J and Dunn C G 1935 Phys. Rev. 47 679 [31] Siringo F and Marotta L 2005 Eur. Phys. J. C 44 293 [32] Umrigar C J, Wilson K G and Wilkins J W 1988 Phys. Rev. Lett. 60 1719 [33] Umrigar C J and Filippi C 2005 Phys. Rev. Lett. 94 150201 [34] Khemani V, Pollmann F and Sondhi S L 2016 Phys. Rev. Lett. 116 247204 [35] Pollmann F, Khemani V, Cirac J I and Sondhi S L 2016 Phys. Rev. B 94 041116 [36] Vicentini F, Biella A, Regnault N and Ciuti C 2019 Phys. Rev. Lett. 122 250503 [37] Bairey E, Arad I and Lindner N H 2019 Phys. Rev. Lett. 122 020504 [38] Chertkov E and Clark B K 2018 Phys. Rev. X 8 031029 [39] Qi X L and Ranard D 2019 Quantum 3 159 [40] Alba V, Fagotti M and Calabrese P 2009 J. Stat. Mech.: Theory and Experiment 2009 P10020 [41] Schuld M, Bergholm V, Gogolin C, Izaac J and Killoran N 2019 Phys. Rev. A 99 032331 [42] Sweke R, Wilde F, Meyer J, Schuld M, Fährmann P K, Meynard-Piganeau B and Eisert J 2019 arXiv:1910.01155v1 [43] Huggins W J, McClean J, Rubin N, Jiang Z, Wiebe N, Whaley K B and Babbush R 2019 arXiv:1907.13117 [44] Cotler J and Wilczek F 2020 Phys. Rev. Lett. 124 100401 [45] Seki K and Yunoki S 2021 PRX Quantum 2 010333 [46] McClean J R et al. 2020 Quantum Sci. Technol. 5 034014 [47] Huawei HiQ team A High-performance Quantum Computing Simulator and Programming Framework [48] Wiersema R, Zhou C, de Sereville Y, Carrasquilla J F, Kim Y B and Yuen H 2020 PRX Quantum 1 020319 [49] Evgeniou T and Pontil M 2004 Regularized multi-task learning Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD'04 (New York, USA: Association for Computing Machinery) pp. 109-117 [50] Goodfellow I, Bengio Y and Courville A 2016 Deep Learning (MIT Press) [51] Kübler J M, Arrasmith A, Cincio L and Coles P J 2020 Quantum 4 263 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|