Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114206    DOI: 10.1088/1674-1056/ac81ac
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method

Hao Wang(王浩)1, Liang Qiao(乔亮)1,†, Zu-Ying Zheng(郑祖应)1, Hong-Bo Hao(郝宏波)2, Tao Wang(王涛)1, Zheng Yang(杨正)1, and Fa-Shen Li(李发伸)1
1 Institute of Applied Magnetism, Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou 014000, China
Abstract  As concepts closely related to microwave absorption properties, impedance matching and phase matching were rarely combined with material parameters to regulate properties and explore related mechanisms. In this work, reduction-diffusion method was innovatively applied to synthesize rare earth alloy Y$_{2}$Fe$_{17}$. In order to regulate the electromagnetic parameters of absorbers, the Y$_{2}$Fe$_{17}$N$_{3-\delta }$ particles were coated with silica (Y$_{2}$Fe$_{17}$N$_{3-\delta }$@SiO$_{2}$) and absorbers with different volume fractions were prepared. The relationship between impedance matching, matching thickness, and the strongest reflection loss peak (${\rm RL}_{\rm min}$) was presented obviously. Compared to the microwave absorption properties of Y$_{2}$Fe$_{17}$N$_{3-\delta }$/PU absorber, Y$_{2}$Fe$_{17}$N$_{3-\delta }$@SiO$_{2}$/PU absorbers are more conducive to the realization of microwave absorption material standards which are thin thickness, light weight, strong absorbing intensity, and broad bandwidth. Based on microwave frequency bands, the microwave absorption properties of the absorbers were analyzed and the related parameters were listed. As an important parameter related to perfect matching, reflection factor ($\sqrt {ărepsilon_{\rm r}/\mu_{\rm r}}$) was discussed combined with microwave amplitude attenuation. According to the origin and mathematical model of bandwidth, the formula of EAB (${\rm RL}<-10$ dB) was derived and simplified. The calculated bandwidths agreed well with experimental results.
Keywords:  microwave absorption      rare earth alloy      reduction-diffusion method      Y2Fe17N3-δ@SiO2      reflection factor      impedance and phase matching      bandwidth formula  
Received:  23 May 2022      Revised:  14 July 2022      Accepted manuscript online:  18 July 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  75.50.Bb (Fe and its alloys)  
  76.30.Kg (Rare-earth ions and impurities)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501300), the National Natural Science Foundation of China (Grant No. 51731001), and the Fund from the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects.
Corresponding Authors:  Liang Qiao     E-mail:  qiaoliang@lzu.edu.cn

Cite this article: 

Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸) Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method 2022 Chin. Phys. B 31 114206

[1] Wang B L, Wu Q, Fu Y G and Liu T 2021 J. Mater. Sci. Technol. 86 91
[2] Zhuang X H, Tan G G, Ning M Q, Qi C Y, Ge X J, Yang Z and Man Q K 2021 J. Alloys Compd. 883 160835
[3] Fan Y, Wang J Y, Zhang X M, Zhu Z S, Liu Y, Xie A T, Bai H C and Kong L B 2021 Diam. Relat. Mater. 120 108685
[4] Qin G Y, Huang X X, Yan X, He Y F, Liu Y H, Xia L and Zhong B 2022 J. Adv. Ceram. 11 105
[5] Wang T, Zhang J M, Wang P, Qiao L, Tang L Y, Xue D S and Li F S 2016 J. Magn. Mater. Dev. 47 No. 6 (in Chinese)
[6] Li X, Huang C, Wang Z L, Xiang Z and Lu W 2021 J. Alloys Compd. 879 160465
[7] Ling A, Pan J, Tan G G, Gu X S, Lou Y X, Chen S W, Man Q K, Li R W and Liu X C 2019 J. Alloys Compd. 787 1097
[8] Xiang Z, Zhang X, Shi Y Y, Cai L, Cheng J, Jiang H J, Zhu X J, Dong Y Y and Lu W 2021 Carbon 185 477
[9] Zhu X J, Dong Y Y, Pan F, Xiang Z, Liu Z C, Deng B W, Zhang X, Shi Z and Lu W 2021 Compos. Commun. 25 100731
[10] Tan G G, Zhang Y B, Qiao L, Wang T, Wang J B and Li F S 2015 Physica B 477 52
[11] Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T and Li F S 2022 J. Magn. Magn. Mater. 549 168962
[12] Wang P, Zhang J M, Wang G W, Duan B F, Wang T and Li F S 2020 Appl. Phys. Lett. 116 112403
[13] Zuo W L, Qiao L, Chi X, Wang T and Li F S 2011 J. Alloys Compd. 509 6359
[14] He Y, Pan S K, Cheng L C, Luo J L and Yu J J 2019 J. Electron. Mater. 48 1574
[15] Qiao G Y, Yang W Y, Lai Y F, Tian G, Zha L, Hu Q W, Liu S Q, Wang C S, Han J Z, Du H L, Yang Y C and Yang J B 2019 Mater. Res. Express 6 016103
[16] Xiong J L, Pan S K, Cheng L C, Lin P H, Yao Q R and Fan Y L 2017 Rare Metal Mater. Eng. 46 2060
[17] Gu X S, Tan G G, Chen S W, Man Q K, Chen S L, Jiang L Q, Chang C T, Wang X M, Li F S and Li R W 2017 Mater. Sci. Forum 898 1638
[18] He Y, Pan S K, Cheng L C, Luo J L, Xu Y Q, Yu J J and Chang J Q 2018 J. Mater. Sci. Mater. Electron. 29 12624
[19] Hu Q W, Qiao G Y, Yang W Y, Liu Z, Zhang P Y, Liu S Q, Wang C S, Zhou D, Han R, Cai D Y, Hu B Q and Yang J B 2020 J. Phys. D 53 115001
[20] Zhou Y Y, Xie H, Zhou W C and Ren Z W 2018 J. Magn. Magn. Mater. 446 143
[21] Qtani Y, Hurley D P F, Sun H and Coey J M D 1991 J. Appl. Phys. 69 5584
[22] Sun H, Coey J M, Otani Y and Hurley D P F 1990 J. Phys.: Condens. Matter 2 6465
[23] Wang T, Han R, Tan G G, Wei J J, Qiao L and Li F S 2012 J. Appl. Phys. 112 104903
[24] Wang X, Pan F, Xiang Z, Zeng Q W, Pei K, Che R C and Lu W 2020 Carbon 157 130
[25] Naito Y and Suetake K 1971 IEEE Trans. Microw. Theory Tech. 19 65
[26] Qiao L, Wang T, Mei Z L, Li X L, Sui W B, Tang L Y and Li F S 2016 Chin. Phys. Lett. 33 027502
[27] Wang T, Wei J J, Zhang Z Q and Li F S 2013 Mater. China 32 No. 2
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[4] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[5] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[6] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[7] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[8] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
[9] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie (梁嘉杰), Huang Yi (黄毅), Zhang Fan (张帆), Li Ning (李宁), Ma Yan-Feng (马延风), Li Fei-Fei (李飞飞), Chen Yong-Sheng (陈永胜). Chin. Phys. B, 2014, 23(8): 088802.
[10] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min (力国民), Wang Lian-Cheng (王连成), Xu Yao (徐耀). Chin. Phys. B, 2014, 23(8): 088105.
[11] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua(彭志华), Gong Xue-Yu(龚学余), Peng Yan-Feng(彭延峰), Guo Yan-Chun(郭燕春), and Ning Yan-Tao(宁艳桃) . Chin. Phys. B, 2012, 21(7): 078102.
[12] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang(位建强), Zhang Zhao-Qi(张钊琦), Han Rui(韩瑞), Wang Tao(王涛), and Li Fa-Shen(李发伸) . Chin. Phys. B, 2012, 21(3): 037601.
[13] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. Garcìa-Miquel and G.V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
[14] Investigation of photoelectron temporal characteristics in silver halide microcrystals using the microwave absorption technique
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dai Xiu-Hong (代秀红), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2004, 13(8): 1326-1329.
[15] Investigation of the photoelectron decay of silver halide microcrystal
Yang Shao-Peng (杨少鹏), Fu Guang-Sheng (傅广生), Dong Guo-Yi (董国义), Li Xiao-Wei (李晓苇), Han Li (韩理). Chin. Phys. B, 2003, 12(12): 1435-1439.
No Suggested Reading articles found!