Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications |
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远)† |
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract Topological photonic states (TPSs) as a new type of waveguide state with one-way transport property can resist backscattering and are impervious to defects, disorders and metallic obstacles. Gyromagnetic photonic crystal (GPC) is the first artificial microstructure to implement TPSs, and it is also one of the most important platforms for generating truly one-way TPSs and exploring their novel physical properties, transport phenomena, and advanced applications. Herein, we present a brief review of the fundamental physics, novel properties, and practical applications of TPSs based on GPCs. We first examine chiral one-way edge states existing in uniformly magnetized GPCs of ordered and disordered lattices, antichiral one-way edge states in cross magnetized GPCs, and robust one-way bulk states in heterogeneously magnetized GPCs. Then, we discuss the strongly coupling effect between two co-propagating (or counter-propagating) TPSs and the resulting physical phenomena and device applications. Finally, we analyze the key issues and prospect the future development trends for TPSs in GPCs. The purpose of this brief review is to provide an overview of the main features of TPSs in GPC systems and offer a useful guidance and motivation for interested scientists and engineers working in related scientific and technological areas.
|
Received: 30 June 2022
Revised: 12 September 2022
Accepted manuscript online: 19 September 2022
|
PACS:
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
Fund: Project supported by Guangdong Provincial Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Science and Technology Project of Guangdong Province, China (Grant No. 2020B010190001), and the National Key Research and Development Program of China (Grant No. 2018YFA 0306200). |
Corresponding Authors:
Zhi-Yuan Li
E-mail: phzyli@scut.edu.cn
|
Cite this article:
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远) Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications 2022 Chin. Phys. B 31 114207
|
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [2] John S 1987 Phys. Rev. Lett. 58 2486 [3] Yablonovitch E, Gmitter T J, Leung K M, Meade R D, Rappe A M, Brommer K D and Joannopoulos J D 1992 Opt. Quantum Electron. 24 S273 [4] Ho K M, Chan C T and Soukoulis C M 1990 Phys. Rev. Lett. 65 3152 [5] Lu L, Joannopoulos J D and Solja?i? M 2014 Nat. Photon. 8 821 [6] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 15006 [7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [8] Khanikaev A B, Hossein Mousavi S, Tse W K, Kargarian M, MacDonald A H and Shvets G 2013 Nat. Mater. 12 233 [9] Lu L, Joannopoulos J D and Solja?i? M 2016 Nat. Phys. 12 626 [10] Khanikaev A B and Shvets G 2017 Nat. Photon. 11 763 [11] Xie B Y, Wang H F, Zhu X Y, Lu M H, Wang Z D and Chen Y F 2018 Opt. Express 26 24531 [12] Lan Z, Chen M, Gao F, Zhang S and Sha W 2022 Rev. Phys. 9 100076 [13] Segev M and Bandres M A 2020 Nanophotonics 10 425 [14] Kim M, Jacob Z and Rho J 2020 Light Sci. Appl. 9 130 [15] Ma S and Anlage S M 2020 Appl. Phys. Lett. 116 250502 [16] Wang H, Gupta S K, Xie B and Lu M 2020 Front. Optoelectron. 13 50 [17] Liu H, Xie B, Cheng H, Tian J and Chen S 2021 Chin. Opt. Lett. 19 052602 [18] Xue H, Yang Y and Zhang B 2021 Adv. Photon. Res. 2 2100013 [19] Ozawa T, El-Ganainy R and Amo A 2021 Opt. Mater. Express 11 1592 [20] Bisharat D J, Davis R J, Zhou Y, Bandaru P R and Sievenpiper D F 2021 IEEE Antennas Propag. M. 63 112 [21] Zhirihin D V and Kivshar Y S 2021 Small Sci. 1 2100065 [22] Liu J W, Shi F L, He X T, Tang G J, Chen W J, Chen X D and Dong J W 2021 Adv. Phys. X 6 1905546 [23] Wang X, Zhao W, Zhang H, Elshahat S and Lu C 2022 Front. Mater. 8 816877 [24] Price H, Chong Y, Khanikaev A, et al. 2022 J. Phys. Photon. 4 032501 [25] Tang G, He X, Shi F, Liu J, Chen X and Dong J 2022 Laser Photon. Rev. 16 2100300 [26] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 013904 [27] Wang Z, Chong Y D, Joannopoulos J D and Solja?i? M 2008 Phys. Rev. Lett. 100 013905 [28] Wang Z, Chong Y, Joannopoulos J D and Solja?i? M 2009 Nature 461 772 [29] Fu J X, Liu R J and Li Z Y 2010 Appl. Phys. Lett. 97 041112 [30] Poo Y, Wu R X, Lin Z, Yang Y and Chan C T 2011 Phys. Rev. Lett. 106 093903 [31] Ao X, Lin Z and Chan C T 2009 Phys. Rev. B 80 033105 [32] Hafezi M, Demler E A, Lukin M D and Taylor J M 2011 Nat. Phys. 7 907 [33] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298 [34] Skirlo S A, Lu L and Solja?i? M 2014 Phys. Rev. Lett. 113 113904 [35] Skirlo S A, Lu L, Igarashi Y, Yan Q, Joannopoulos J and Solja?i? M 2015 Phys. Rev. Lett. 115 253901 [36] Xi X, Ye K P and Wu R X 2020 Photon. Res. 8 B1 [37] Lu L, Fu L, Joannopoulos J D and Soljacic M 2013 Nat. Photon. 7 294 [38] Lu L, Wang Z, Ye D, Ran L, Fu L, Joannopoulos J D and Solja?i? M 2015 Science 349 622 [39] Vaidya S, Noh J, Cerjan A, Jörg C, Von Freymann G and Rechtsman M C 2020 Phys. Rev. Lett. 125 253902 [40] Chang M L, Xiao M, Chen W J and Chan C T 2017 Phys. Rev. B 95 125136 [41] He L, Addison Z, Mele E J and Zhen B 2020 Nat. Commun. 11 3119 [42] Chen X D, Deng W M, Shi F L, Zhao F L, Chen M and Dong J W 2019 Phys. Rev. Lett. 122 233902 [43] Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L and Chen Y F 2019 Phys. Rev. Lett. 122 233903 [44] Xie B Y, Su G X, Wang H F, Liu F, Hu L, Yu S Y, Zhan P, Lu M H, Wang Z L and Chen Y F 2020 Nat. Commun. 11 3768 [45] Devescovi C, García-Díez M, Robredo I, Blanco de Paz M, Lasa-Alonso J, Bradlyn B, Ma?es J L, G. Vergniory M and García-Etxarri A 2021 Nat. Commun. 12 7330 [46] Yang Y, Gao Z, Xue H, Zhang L, He M, Yang Z, Singh R, Chong Y, Zhang B and Chen H 2019 Nature 565 622 [47] Bahari B, Ndao A, Vallini F, El Amili A, Fainman Y and Kanté B 2017 Science 358 636 [48] Mann S A and Alú A 2021 Phys. Rev. Lett. 127 123601 [49] Yu L, Xue H and Zhang B 2021 Appl. Phys. Lett. 118 071102 [50] Liu S, Lu W, Lin Z and Chui S T 2010 Appl. Phys. Lett. 97 201113 [51] Wang Z Y, Yu Z H, Zheng X D and Wang L 2012 J. Electromagn. Waves Appl. 26 1476 [52] Chen J and Li Z Y 2022 Opto-Electronic Sci. 1 220001 [53] Kruk S, Poddubny A, Smirnova D, Wang L, Slobozhanyuk A, Shorokhov A, Kravchenko I, Luther-Davies B and Kivshar Y 2019 Nat. Nanotechnol. 14 126 [54] Zangeneh-Nejad F and Fleury R 2019 Phys. Rev. Lett. 123 053902 [55] Smirnova D, Leykam D, Chong Y and Kivshar Y 2020 Appl. Phys. Rev. 7 021306 [56] Leykam D and Chong Y D 2016 Phys. Rev. Lett. 117 143901 [57] Dobrykh D A, Yulin A V, Slobozhanyuk A P, Poddubny A N and Kivshar Y S 2018 Phys. Rev. Lett. 121 163901 [58] Lan Z, You J W and Panoiu N C 2020 Phys. Rev. B 101 155422 [59] Zhang Y, Kartashov Y V, Torner L, Li Y and Ferrando A 2020 Opt. Lett. 45 4710 [60] Ao Y, Hu X, You Y, Lu C, Fu Y, Wang X and Gong Q 2020 Phys. Rev. Lett. 125 13902 [61] Xue H, Wang Q, Zhang B and Chong Y D 2020 Phys. Rev. Lett. 124 236403 [62] Pan M, Zhao H, Miao P, Longhi S and Feng L 2018 Nat. Commun. 9 1308 [63] Silveirinha M G 2019 Phys. Rev. B 99 125155 [64] Ren Z, Liu D, Zhao E, He C, Pak K K, Li J and Jo G B 2022 Nat. Phys. 18 385 [65] Kre?i? I, Makris K G, Leonhardt U and Rotter S 2022 Phys. Rev. Lett. 128 183901 [66] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674 [67] Wang H X, Guo G Y and Jiang J H 2019 New J. Phys. 21 093029 [68] Wang C, Zhang H, Yuan H, Zhong J and Lu C 2020 Front. Optoelectron. 13 73 [69] Liu K, Shen L and He S 2012 Opt. Lett. 37 4110 [70] Liu S, Lu W, Lin Z and Chui S T 2011 Phys. Rev. B 84 045425 [71] Lian J, Fu J X, Gan L and Li Z Y 2012 Phys. Rev. B 85 125108 [72] Mansha S and Chong Y D 2017 Phys. Rev. B 96 121405 [73] Zhou P, Liu G G, Ren X, Yang Y, Xue H, Bi L, Deng L, Chong Y and Zhang B 2020 Light Sci. Appl. 9 133 [74] Yang B, Zhang H, Wu T, Dong R, Yan X and Zhang X 2019 Phys. Rev. B 99 045307 [75] Chen J, Qin Q, Peng C and Li Z Y 2022 Opt. Express 30 21621 [76] Liu S, Lu W, Lin Z and Chui S T 2011 Phys. Rev. B 84 045425 [77] Yang B, Zhang H, Shi Q, Wu T, Ma Y, Lv Z, Xiao X, Dong R, Yan X and Zhang X 2020 Opt. Express 28 31487 [78] Liu G G, Yang Y, Ren X, Xue H, Lin X, Hu Y H, Sun H, Peng B, Zhou P, Chong Y and Zhang B 2020 Phys. Rev. Lett. 125 133603 [79] Chen J, Liang W and Li Z Y 2020 Phys. Rev. B 101 214102 [80] Zhou P, Liu G G, Yang Y, Hu Y H, Ma S, Xue H, Wang Q, Deng L and Zhang B 2020 Phys. Rev. Lett. 125 263603 [81] Gao Z, Gao F and Zhang B 2016 Appl. Phys. Lett. 108 041105 [82] Zhang L, Yang Y, He M, Wang H X, Yang Z, Li E, Gao F, Zhang B, Singh R, Jiang J H and Chen H 2019 Laser Photon. Rev. 13 1900159 [83] Yang Y, Xu Y F, Xu T, Wang H X, Jiang J H, Hu X and Hang Z H 2018 Phys. Rev. Lett. 120 217401 [84] He C, Chen X L, Lu M H, Li X F, Wan W W, Qian X S, Yin R C and Chen Y F 2010 Appl. Phys. Lett. 96 111111 [85] Zhang X, Zhou Y, Sun X, Zhang X, Lu M and Chen Y 2022 Nanomaterials 12 819 [86] Chen J and Li Z Y 2022 Phys. Rev. Lett. 128 257401 [87] Fang Y T and Chen Z 2018 Photon. Netw. Commun. 35 231 [88] Chen J, Liang W and Li Z Y 2020 Opt. Lett. 45 4964 [89] Chen J, Liang W and Li Z Y 2019 Photon. Res. 7 1075 [90] Zhuang S, Chen J, Liang W and Li Z Y 2021 Opt. Express 29 2478 [91] Chen J, Qin Q, Peng C, Liang W and Li Z Y 2021 Front. Mater. 8 728991 [92] Liu K, Shen L, Zheng X and He S 2012 IEEE J. Quantum Electron. 48 1059 [93] Chen J, Liang W and Li Z Y 2019 Phys. Rev. B 99 014103 [94] Wang M, Zhang R Y, Zhang L, Wang D, Guo Q, Zhang Z Q and Chan C T 2021 Phys. Rev. Lett. 126 067401 [95] Bahari B, Hsu L, Pan S H, Preece D, Ndao A, El Amili A, Fainman Y and Kanté B 2021 Nat. Phys. 17 700 [96] Peng C, Chen J, Qin Q and Li Z Y 2022 Front. Phys. 9 825643 [97] Lumer Y and Engheta N 2020 ACS Photon. 7 2244 [98] Yang Y, Poo Y, Wu R X, Gu Y and Chen P 2013 Appl. Phys. Lett. 102 231113 [99] Yu L, Xue H and Zhang B 2021 Appl. Phys. Lett. 118 071102 [100] Lu L, Gao H and Wang Z 2018 Nat. Commun. 9 5384 [101] Xu B, Zhang D, Zeng X, Wang Y and Dong Z 2019 IEEE Photon. Technol. Lett. 31 743 [102] Wang Y, Zhang D, Xu B, Dong Z, Zeng X, Pei J, Xu S and Xue Q 2019 IEEE Access 7 120463 [103] Teo H T, Xue H and Zhang B 2022 Phys. Rev. A 105 053510 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|