Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114401    DOI: 10.1088/1674-1056/ac8cdc

Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite

Lihong Shi(史丽弘)1,† and Jiebin Peng(彭洁彬)2,‡
1 School of Science, JiangNan University, Wuxi 214122, China;
2 School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract  Advanced textiles for thermal management give rise to many functional applications and unveil a new frontier for the study of human thermal comfort. Manipulating the coated quasi-particles between the composite components offers a platform to study the advanced thermoregulatory textiles. Here, we propose that coating the hyperbolic polariton can be an effective tool to tune infrared absorption in hexagonal boron nitride-coated silk composite. Remarkably, we achieve significant tuning of the infrared absorption efficiency of silk fibrils through the designed hexagonal boron nitride film. The underlying mechanism is related to resonance coupling between hyperbolic phonon polaritons. We find a notably high infrared absorption efficiency, nearly 3 orders larger than that without hBN coating, which can be achieved in our composite system. Our results indicate the promising future of advanced polariton-coated textiles and open a pathway to guide the artificial-intelligence design of advanced functional textiles.
Keywords:  thermal radiation      thermal management      infrared absorption      hyperbolic polaritons  
Received:  14 May 2022      Revised:  21 July 2022      Accepted manuscript online:  26 August 2022
PACS:  44.40.+a (Thermal radiation)  
  65.90.+i (Other topics in thermal properties of condensed matter)  
  33.20.Ea (Infrared spectra)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
Corresponding Authors:  Lihong Shi, Jiebin Peng     E-mail:;

Cite this article: 

Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬) Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite 2022 Chin. Phys. B 31 114401

[1] Dolez P and Vermeersch O 2018 Introduction to advanced characterization and testing of textiles, in: Advanced Charaterization and Testing of Textiles (Elsevier)
[2] Zhao D, Lu X, Fan T, Wu Y S, Lou L, Wang Q, Fan J and Yang R 2018 Appl. Energy 218 282
[3] Peng L, Su B, Yu A and Jiang X 2019 Cellulose 26 1
[4] Hu R, Liu Y D,Shin S M, Huang S Y, Ren X C, Shu W C, Cheng J J, Tao G M, Xu W L, Chen R K and Luo X B 2020 Adv. Energy Mater. 10 1903921
[5] Pakdel E, Naebe M, Sun L and Wang X 2019 ACS Appl. Mater. Interfaces 11 13039
[6] Sabir T 2018 Fibers used for high-performance apparel. in: High-Performance Apparel (Elsevier)
[7] Wang L 2016 Performance Testing of Textiles: Methods, Technology and Applications (Woodhead Publishing)
[8] Hsu P C, Liu X, Liu C, Xie X, Lee H R, Welch A J, Zhao T and Cui Y 2014 Nano Lett. 15 365
[9] Hazarika A, Deka B K, Kim D, Jeong H E, Park Y B and Park H W 2018 Nano Lett. 18 6731
[10] Luo H, Li Q, Du K, Xu Z, Zhu H, Liu D, Cai L, Ghosh P and Qiu M 2019 Nano. Energy 65 103998
[11] Zhu Y N , Luo H, Yang C Y, Qin B, Ghosh P, Kaur S, Shen W D, Qiu M, Belov P and Li Q 2022 Light: Science & Applications 11 122
[12] Luo H, Zhu Y N, Xu Z Q, Hong Y, Ghosh P, Kaur S, Wu M B, Yang C Y, Qiu M and Li Q 2021 Nano Lett. 21 3879
[13] Weng Q, Wang X, Bando Y and Golberg D 2016 Chem. Soc. Rev. 45 3989
[14] Santin M, Motta A, Freddi G and Gannas M 1999 J. Biomed. Mater. Res. 46 382
[15] Jiang X F, Weng Q, Wang X B, Li X, Zhang J, Golberg D and Bando Y 2015 J. Mater. Sci. Technol. 31 589
[16] Weng Q, Wang X, Wang X, Bando Y and Golberg D 2016 Chem. Soc. Rev. 45 3989
[17] Chen J, Huang X, Zhu Y and Jiang P 2017 Adv. Funct. Mater. 27 1604754
[18] Gao T T, Yang Z, Chen C J, Li Y J, Fu K, Dai J Q, Hitz E M, Xie H, Liu B Y, Song J W, Yang B and Hu L B 2017 ACS Nano 11 11513
[19] Min B M, Lee G, Kim S H, Nam Y S, Lee T S and Park W H 2004 Biomaterials 25 1289
[20] Li H Q, Yu J S, Huang W, Shi W and Huang J 2014 Chin. Phys. B 23 038505
[21] Zhang R, Yu J S, Huang J, Chen G L, Liu X, Chen W, Wang X Q and Li C R 2018 Chin. Phys. B 27 055207
[22] Jing R, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S H, Kaplan D L, Buehler M J and Ling S J 2019 Chem. Rev. 119 12279
[23] Kun L, Li P and Fan Y B 2019 J. Mater. Chem. B 7 6890
[24] Zhou X H, Li D C, Wan S J, Cheng Q F and Ji B H 2019 Acta Mech. 230 1413
[25] Shi L H, Huang Y, Gao L and Cheng Y 2021 J. Elec. Mater. 50 592
[26] Ashal S, Sangappal Y and Sanjeev G 2016 J. Opt. 45 66
[27] Zhang Z M 2020 Nano/Microscale heat transfer, 2nd, edn. (Springer)
[28] Zhao B, Guizal B, Zhang Z M, Fan S H and Antezza M 2017 Phys. Rev. B 95 245437
[29] Zhao B and Zhang Z M 2017 J. Heat Transfer 139 022701
[30] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
[31] Alfaro-Mozaz F J, Rodrigo S G, Alonso-Gonzalez P, Velez S, Dolado I, Casanova F, Hueso L E, Martin-Moreno L, Hillenbrand R and Nikitin A Y 2019 Nat. Commun. 10 42
[32] Sihvola A, Tzarouchis D C, Oijala P Y, Wallen H and Kong B B 2018 Phys. Rev. B 98 235417
[33] Christensen T, Jauho A P, Wubs M and Mortensen N A 2015 Phys. Rev. B 91 125414
[34] Tzarouchis D and Sihvola A 2018 Appl. Sci. 8 184
[35] Li R J, Lin X, Lin S S, Liu X and Chen H S 2015 Opt. Lett. 40 1651
[36] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (Wiley)
[37] Zhang K and Gao L 2017 Opt. Express 25 13747
[38] Huang Y, Xiao J J and Gao L 2015 Opt. Express 23 8818
[39] Zhang H R, Zhao J T, Xing T L, Lu S Z and Chen G Q 2019 Polymers 11 1774
[40] Wang Q, Lin S J, Yao Q Z, Li Q Y, Hu D B, Dai Q, Weitz D A, Kaplan D L, Buehler M J and Zhang Y Y 2020 ACS Materials Lett. 2 153
[41] Balcytis A, Ryu M, Wang X W, Novelli F, Seniutinas G, Du S, Wang X G, Li J L, Davis J, Appadoo D, Morikawa J and Juodkazis S 2017 Materials 10 356
[42] Zhang X A, Yu S J, Xu B B, Li M, Peng Z W, Wang Y X, Deng S L, Wu X J, Wu Z P, Ouyang M and Wang Y H 2019 Science 363 619
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[3] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[4] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[5] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[6] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[7] Three-dimensional flow of Powell-Eyring nanofluid with heat and mass flux boundary conditions
Tasawar Hayat, Ikram Ullah, Taseer Muhammad, Ahmed Alsaedi, Sabir Ali Shehzad. Chin. Phys. B, 2016, 25(7): 074701.
[8] Room temperature direct-bandgap electroluminescence from a horizontal Ge ridge waveguide on Si
Chao He(何超), Zhi Liu(刘智), Bu-Wen Cheng(成步文). Chin. Phys. B, 2016, 25(12): 126104.
[9] Spectral enhancement of thermal radiation by laser fabricating grating structure on nickel surface
Liu Song (刘嵩), Liu Shi-Bing (刘世炳). Chin. Phys. B, 2015, 24(5): 054401.
[10] C–H complex defects and their influence in ZnO single crystal
Xie Hui (谢辉), Zhao You-Wen (赵有文), Liu Tong (刘彤), Dong Zhi-Yuan (董志远), Yang Jun (杨俊), Liu Jing-Ming (刘京明). Chin. Phys. B, 2015, 24(10): 107704.
[11] Deposition of hexagonal boron nitride thin films on silver nanoparticle substrates and surface enhanced infrared absorption
Deng Jin-Xiang (邓金祥), Chen Liang (陈亮), Man Chao (满超), Kong Le (孔乐), Cui Min (崔敏), Gao Xue-Fei (高学飞). Chin. Phys. B, 2014, 23(4): 047104.
[12] Residual compressive stress and intensity of infrared absorption of cubic BN films prepared by plasma enhanced chemical vapor deposition
Yang Hang-Sheng (杨杭生), Jin Pan-Pan (金盼盼), Xu Ya-Bo (徐亚伯), Li Hai-Yang (李海洋). Chin. Phys. B, 2014, 23(3): 037201.
[13] MHD boundary layer flow of Casson fluid passing through an exponentially stretching permeable surface with thermal radiation
Swati Mukhopadhyay, Iswar Ch, ra Moindal, Tasawar Hayat. Chin. Phys. B, 2014, 23(10): 104701.
[14] Dual solutions in boundary layer flow of a moving fluid over a moving permeable surface in presence of prescribed surface temperature and thermal radiation
Swati Mukhopadhyay. Chin. Phys. B, 2014, 23(1): 014702.
[15] A comparison of different entransy flow definitions and entropy generation in thermal radiation optimization
Zhou Bing (周兵), Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2013, 22(8): 084401.
No Suggested Reading articles found!