CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity |
Yi-Bo Liang(梁艺博)1, Zhao Liu(刘钊)1, Jing Wang(王静)1,†, and Ying Liu(刘英)1,2 |
1 Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, China; 2 National Key Laboratory for Materials Simulation and Design, Beijing 100083, China |
|
|
Abstract As the lightest two-dimensional material, monolayer borophene exhibits great potential as electrode materials, but it suffers from stability issues in the free-standing form. Here, the striped-borophene and graphene bilayer (sB/Gr) is found to be a high-performance anode material for rechargeable alkali-metal ion batteries. The first-principles results show that all the three alkali-metal atoms, Li, Na, and K, can be strongly adsorbed on sB/Gr with ultra-low diffusion barriers than that on pristine borophene/graphene, indicating good charge-discharge rates. Remarkably, high storage capacities are proposed for LIBs (1880 mA·h/g), NIBs (1648 mA·h/g), and KIBs (470 mA·h/g) with relatively small lattice change rate (<2.9%) in the process of alkali-metal atoms intercalations. These intriguing features of sB/Gr make it an excellent choice for batteries.
|
Received: 15 February 2022
Revised: 15 May 2022
Accepted manuscript online: 14 June 2022
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.47.Jk
|
(Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)
|
|
96.15.Pf
|
(Physical properties of materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174084), the Scientific and Technological Research Foundation of Hebei Province, China (Grant No. ZD2021065), and the Key Program of Natural Science Foundation of Hebei Province, China (Grant No. A2021205024). |
Corresponding Authors:
Jing Wang
E-mail: jwang@hebtu.edu.cn
|
Cite this article:
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英) AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity 2022 Chin. Phys. B 31 116302
|
[1] Zhang P P, Wang F X, Yu M H, Zhuang X D and Feng X L 2018 Chem. Soc. Rev. 47 7426 [2] Mukherjee S and Singh G 2019 ACS Appl. Energy Mater. 2 932 [3] Opitz A, Badami P, Shen L, Vignarooban K and Kannan A M 2017 Renew. Sust. Energ. Rev. 68 685 [4] Samad A, Shafique A and Shin Y H 2017 Nanotechnology 28 175401 [5] Armand M and Tarascon J M 2008 Nature 451 652 [6] Goodenough J B and Park K S 2013 J. Am. Chem. Soc. 135 1167 [7] Hwang J Y, Myung S T and Sun Y K 2017 Chem. Soc. Rev. 46 3529 [8] Zhang W Ch, Liu Y J and Guo Z P 2019 Sci. Adv. 5 eaav7412 [9] Zhang X Y, Lv R J, Tang W J, Li G J, Wang A X, Dong A P, Liu X J and Luo J Y 2020 Adv. Funct. Mater. 30 2004187 [10] Guo Q, Zeng W, Liu S L, Li Y Q, Xu J Y, Wang J X and Wang Y. 2021 Rare Met. 40 290 [11] Cheng H, Shapter J G, Li Y Y and Gao G 2021 J. Energy Chem. 57 451 [12] Bahari Y, Mortazavi B, Rajabpour A, Zhuang X Y and Rabczuk T 2021 Energy Stor. Mater. 35 203 [13] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S and Pellegrini V 2015 Science 347 1246501 [14] Sun C H and Searles D J 2012 J. Phys. Chem. C 116 26222 [15] Wu D H, Li Y F and Zhou Z 2011 Theor. Chem. Acc. 130 209 [16] Yoo E, Kim J, Hosono E, Zhou H S, Kudo T and Honma I 2008 Nano Lett. 8 2277 [17] Yang X B, Ding Y and Ni J 2008 Phys. Rev. B 77 041402 [18] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513 [19] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563 [20] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Sci. Bull. 63 282 [21] Mortazavi B, Dianat A, Rahaman O, Cuniberti G and Rabczuk T 2016 J. Power Sources 329 456 [22] Zhang X M, Hu J P, Cheng Y C, Yang H Y, Yao Y G and A Yang S Y 2016 Nanoscale 8 15340 [23] Jiang H R, Lu Z H, Wu M C, Ciucci F and Zhao T S 2016 Nano Energy 23 97 [24] Rao D W, Zhang L Y, Meng Z S, Zhang X R, Wang Y H, Qiao G J, Shen X Q, Xia H, Liu J H and Lu R F 2017 J. Mater. Chem. A 5 2328 [25] Mortazavi B, Rahaman O, Ahzi S and Rabczuk T 2017 Appl. Mater. Today 8 60 [26] Zheng H Y, Li Y J, Liu H B, Yin X D and Li Y L 2011 Chem. Soc. Rev. 40 4506 [27] Liu X L and Hersam M C 2019 Sci. Adv. 5 eaax6444 [28] Kochaev A, Katin K, Maslov M and Meftakhutdinov R 2020 J. Phys. Chem. Lett. 11 5668 [29] Grishakov K S, Katin K P, Kochaev A I, Kaya S, Gimaldinova M A and Maslov M M 2021 Energies 14 2473 [30] Kochaev A, Meftakhutdinov R, Sibatov R, Katin K, Maslov M and Efimov V 2021 Appl. Surf. Sci. 562 150150 [31] Zhang C Y, He Q, Chu W and Zhao Y 2020 Appl. Surf. Sci. 534 147575 [32] Hou C, Tai G A, Liu B, Wu Z H and Yin Y H 2021 Nano Res. 14 2337 [33] Yu J W, Zhou M, Yang M Y, Yang Q F, Zhang Z X and Zhang Y B 2020 ACS Appl. Energy Mater. 3 11699 [34] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [36] Perdew J P, Burke K and Wang Y 1996 Phys. Rev. B 54 16533 [37] Perdew J P and Burke K 1996 Phys. Rev. Lett. 77 3865 [38] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [39] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [40] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978 [41] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [42] Debbichi M, Mallah A, Houcine Dhaou M and Lebégue S 2021 Phys. Rev. Appl. 16 024016 [43] Samad A and Schwingenschlögl U 2021 Phys. Rev. Appl. 15 034025 [44] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 [45] Ye X J, Zhu G L, Liu J, Liu C S and Yan X H 2019 J. Phys. Chem. C 123 15777 [46] Mukherjee S and Singh G 2019 ACS Appl. Energy Mater. 2 932 [47] Abdullahi Y Z, Ersan F, Akturk E and Akturk O U 2021 Phys. Rev. Appl. 16 024031 [48] Olsson E, Chai G L, Dove M and Cai Q 2019 Nanoscale 11 5274 [49] Laidler K J 1984 J. Chem. Educ. 61 494 [50] Toyoura K, Koyama Y, Kuwabara A, Oba F and Tanaka I 2008 Phys. Rev. B 78 214303 [51] Rehman S U, Samad A, Saeed M, Amin B, Hafeez M, Mir I A and Zhu L 2021 Appl. Surf. Sci. 551 149304 [52] Urban A, Seo D H and Ceder G 2016 NPJ Comput. Mater. 2 16002 [53] Zhang Q X, Ma J C, Lei M and Quhe R G 2018 Nanotechnology 29 165402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|