Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104205    DOI: 10.1088/1674-1056/ac5d34
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens

Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳)
Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
Abstract  Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens (ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens (GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.
Keywords:  multiple super-resolution imaging      Mikaelian lens      generalized Maxwell's fish-eye lens      conformal transformation optics  
Received:  03 February 2022      Revised:  25 February 2022      Accepted manuscript online: 
PACS:  42.30.-d (Imaging and optical processing)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92050102), the National Key Research and Development Program of China (Grant No. 2020YFA0710100), and the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074, 20720220134, 202006310051, and 20720220033).
Corresponding Authors:  Huanyang Chen     E-mail:  kenyon@xmu.edu.cn

Cite this article: 

Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳) Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens 2022 Chin. Phys. B 31 104205

[1] Hecht B, Sick B, Wild U P, Deckert V, Zenobi R, Martin O J F and Pohl D W 2000 J. Chem. Phys. 112 7761
[2] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[3] Veselago V 1968 Sov. Phys. Usp. 10 509
[4] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[5] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[6] Taubner T, Korobkin D, Urzhumov Y, Shvets G and Hillenbrand R 2006 Science 313 1595
[7] Smolyaninov I I, Hung Y J and Davis C C 2007 Science 315 1699
[8] Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C and Zhang X 2007 Nano Lett. 7 403
[9] Zhang X and Liu Z W 2008 Nat. Mater. 7 435
[10] Huang T J, Yin L Z, Zhao J, Du C H and Liu P K 2020 ACS Photon. 7 2173
[11] Bi Y G, Peng L, Yang B, Ma S J, Chan H C, Xiang Y J and Zhang S 2021 Optica 8 249
[12] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[13] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[14] Rho J, Ye Z L, Xiong Y B, Yin X, Liu Z W, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 1
[15] Lu D and Liu Z W 2012 Nat. Commun. 3 1
[16] Yuan G H, Rogers E T and Zheludev N I 2017 Light Sci. Appl. 6 e17036
[17] Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R and Zheludev N I 2012 Nat. Mater. 11 432
[18] Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R and Zhu X F 2019 Nat. Commun. 10 1
[19] Berry M V and Popescu S 2006 J. Phys. A: Math. Gen. 39 6965
[20] Huang F M, Zheludev N, Chen Y and Javier Garcia de Abajo F 2007 Appl. Phys. Lett. 90 091119
[21] Mansfield S M and Kino G S 1990 Appl. Phys. Lett. 57 2615
[22] Fletcher D A, Crozier K B, Guarini K W, Minne S C, Kino G S, Quate C F and Goodson K E 2001 J. Microelectromech. Syst. 10 450
[23] Mason D R, Jouravlev M V and Kim K S 2010 Opt. Lett. 35 2007
[24] Kim M S, Scharf T, Haq M T, Nakagawa W and Herzig H P 2011 Opt. Lett. 36 3930
[25] Bogucki A, Zinkiewicz L, Grzeszczyk M, Pacuski W, Nogajewski K, Kazimierczuk T, Rodek A, Suffczynski J, Watanabe K, Taniguchi T, Wasylczyk P, Potemski M and Kossacki P 2020 Light Sci. Appl. 9 48
[26] Zhu H, Fan W, Zhou S X, Chen M and Wu L M 2016 ACS Nano 10 9755
[27] Novitsky A, Repän T, Malureanu R, Takayama O, Shkondin E and Lavrinenko A V 2019 Phys. Rev. A 99 023835
[28] Fan W, Yan B, Wang Z B and Wu L M 2016 Sci. Adv. 2 e1600901
[29] Wu Q, Turpin J P and Werner D H 2012 Light Sci. Appl. 1 e38
[30] He C, Chang J T, Hu Q, Wang J Y, Antonello J, He H H, Liu S X, Lin J Y, Dai B, Elson D S, Xi P, Ma H and Booth M J 2019 Nat. Commun. 10 12286
[31] Li S Y, Zhou Y Y, Dong J J, Zhang X L, Cassan E, Hou J, Yang C Y, Chen S P, Gao D S and Chen H Y 2018 Optica 5 1549
[32] Forbes A 2019 Light Sci. Appl. 8 1
[33] Scopelliti M G and Chamanzar M 2019 Light Sci. Appl. 8 65
[34] Ma H F and Cui T J 2010 Nat. Commun. 1 1126
[35] Kundtz N and Smith D R 2010 Nat. Mater. 9 129
[36] Zhang Y, He Y, Wang H W, Sun L and Su Y K 2020 ACS Photon. 10 0c01269
[37] Leonhardt U 2009 New J. Phys. 11 093040
[38] Leonhardt U and Philbin T G 2010 Phys. Rev. A 81 011804
[39] Tao S C, Zhou Y Y and Chen H Y 2019 Phys. Rev. A 99 013837
[40] Zhou Y Y, Hao Z L, Zhao P F and Chen H Y 2021 Phys. Rev. Appl. 17 034039
[41] Tyc T, Herzánová L, Šarbort M and Bering K 2011 New J. Phys. 13 115004
[42] Mikaelian A L and Prokhorov A M 1980 V self-focusing media with variable index of refraction (Amsterdam: Elsevier) pp. 279—345
[43] Wang X Y, Chen H Y, Liu H, Xu L, Sheng C and Zhu S N 2017 Phys. Rev. Lett. 119 033902
[44] Peng H Y, Liu S L, Wu Y Z, Yan Y, Zhou Z C, Li X C, Bao Q L, Xu L and Chen H Y 2020 Phys. Rev. Appl. 13 034050
[45] Kotlyar V V, Kovalev A A and Soifer V A 2011 Optical Memory and Neural Networks (Information Optics) 19 273
[46] Sun F, Ma Y G, Ge X V and He S L 2013 Opt. Express 21 7328
[47] Xu L and Chen H Y 2014 Nat. Photon. 9 15
[48] Leonhardt U 2006 Science 312 1777
[49] Yin Y H, Li J and Chen H Y 2020 Opt. Express 28 37218
[50] Luneburg R K 1964 Mathematical theory of optics (California: University of California Press)
[51] Chen H Y 2018 Phys. Rev. A 98 043843
[1] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[2] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[5] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[8] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[9] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[10] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[11] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[12] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[13] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[14] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[15] Three-dimensional spatial multi-point uniform light focusing through scattering media based on feedback wavefront shaping
Fan Yang(杨帆), Yang Zhao(赵杨), Chengchao Xiang(向成超), Qi Feng(冯祺), and Yingchun Ding(丁迎春). Chin. Phys. B, 2021, 30(4): 044207.
No Suggested Reading articles found!