Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens |
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳)† |
Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China |
|
|
Abstract Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens (ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens (GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.
|
Received: 03 February 2022
Revised: 25 February 2022
Accepted manuscript online:
|
PACS:
|
42.30.-d
|
(Imaging and optical processing)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92050102), the National Key Research and Development Program of China (Grant No. 2020YFA0710100), and the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074, 20720220134, 202006310051, and 20720220033). |
Corresponding Authors:
Huanyang Chen
E-mail: kenyon@xmu.edu.cn
|
Cite this article:
Yangyang Zhou(周杨阳) and Huanyang Chen(陈焕阳) Near-field multiple super-resolution imaging from Mikaelian lens to generalized Maxwell's fish-eye lens 2022 Chin. Phys. B 31 104205
|
[1] Hecht B, Sick B, Wild U P, Deckert V, Zenobi R, Martin O J F and Pohl D W 2000 J. Chem. Phys. 112 7761 [2] Pendry J B 2000 Phys. Rev. Lett. 85 3966 [3] Veselago V 1968 Sov. Phys. Usp. 10 509 [4] Shelby R A, Smith D R and Schultz S 2001 Science 292 77 [5] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534 [6] Taubner T, Korobkin D, Urzhumov Y, Shvets G and Hillenbrand R 2006 Science 313 1595 [7] Smolyaninov I I, Hung Y J and Davis C C 2007 Science 315 1699 [8] Liu Z W, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C and Zhang X 2007 Nano Lett. 7 403 [9] Zhang X and Liu Z W 2008 Nat. Mater. 7 435 [10] Huang T J, Yin L Z, Zhao J, Du C H and Liu P K 2020 ACS Photon. 7 2173 [11] Bi Y G, Peng L, Yang B, Ma S J, Chan H C, Xiang Y J and Zhang S 2021 Optica 8 249 [12] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247 [13] Liu Z W, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686 [14] Rho J, Ye Z L, Xiong Y B, Yin X, Liu Z W, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 1 [15] Lu D and Liu Z W 2012 Nat. Commun. 3 1 [16] Yuan G H, Rogers E T and Zheludev N I 2017 Light Sci. Appl. 6 e17036 [17] Rogers E T, Lindberg J, Roy T, Savo S, Chad J E, Dennis M R and Zheludev N I 2012 Nat. Mater. 11 432 [18] Shen Y X, Peng Y G, Cai F Y, Huang K, Zhao D G, Qiu C W, Zheng H R and Zhu X F 2019 Nat. Commun. 10 1 [19] Berry M V and Popescu S 2006 J. Phys. A: Math. Gen. 39 6965 [20] Huang F M, Zheludev N, Chen Y and Javier Garcia de Abajo F 2007 Appl. Phys. Lett. 90 091119 [21] Mansfield S M and Kino G S 1990 Appl. Phys. Lett. 57 2615 [22] Fletcher D A, Crozier K B, Guarini K W, Minne S C, Kino G S, Quate C F and Goodson K E 2001 J. Microelectromech. Syst. 10 450 [23] Mason D R, Jouravlev M V and Kim K S 2010 Opt. Lett. 35 2007 [24] Kim M S, Scharf T, Haq M T, Nakagawa W and Herzig H P 2011 Opt. Lett. 36 3930 [25] Bogucki A, Zinkiewicz L, Grzeszczyk M, Pacuski W, Nogajewski K, Kazimierczuk T, Rodek A, Suffczynski J, Watanabe K, Taniguchi T, Wasylczyk P, Potemski M and Kossacki P 2020 Light Sci. Appl. 9 48 [26] Zhu H, Fan W, Zhou S X, Chen M and Wu L M 2016 ACS Nano 10 9755 [27] Novitsky A, Repän T, Malureanu R, Takayama O, Shkondin E and Lavrinenko A V 2019 Phys. Rev. A 99 023835 [28] Fan W, Yan B, Wang Z B and Wu L M 2016 Sci. Adv. 2 e1600901 [29] Wu Q, Turpin J P and Werner D H 2012 Light Sci. Appl. 1 e38 [30] He C, Chang J T, Hu Q, Wang J Y, Antonello J, He H H, Liu S X, Lin J Y, Dai B, Elson D S, Xi P, Ma H and Booth M J 2019 Nat. Commun. 10 12286 [31] Li S Y, Zhou Y Y, Dong J J, Zhang X L, Cassan E, Hou J, Yang C Y, Chen S P, Gao D S and Chen H Y 2018 Optica 5 1549 [32] Forbes A 2019 Light Sci. Appl. 8 1 [33] Scopelliti M G and Chamanzar M 2019 Light Sci. Appl. 8 65 [34] Ma H F and Cui T J 2010 Nat. Commun. 1 1126 [35] Kundtz N and Smith D R 2010 Nat. Mater. 9 129 [36] Zhang Y, He Y, Wang H W, Sun L and Su Y K 2020 ACS Photon. 10 0c01269 [37] Leonhardt U 2009 New J. Phys. 11 093040 [38] Leonhardt U and Philbin T G 2010 Phys. Rev. A 81 011804 [39] Tao S C, Zhou Y Y and Chen H Y 2019 Phys. Rev. A 99 013837 [40] Zhou Y Y, Hao Z L, Zhao P F and Chen H Y 2021 Phys. Rev. Appl. 17 034039 [41] Tyc T, Herzánová L, Šarbort M and Bering K 2011 New J. Phys. 13 115004 [42] Mikaelian A L and Prokhorov A M 1980 V self-focusing media with variable index of refraction (Amsterdam: Elsevier) pp. 279—345 [43] Wang X Y, Chen H Y, Liu H, Xu L, Sheng C and Zhu S N 2017 Phys. Rev. Lett. 119 033902 [44] Peng H Y, Liu S L, Wu Y Z, Yan Y, Zhou Z C, Li X C, Bao Q L, Xu L and Chen H Y 2020 Phys. Rev. Appl. 13 034050 [45] Kotlyar V V, Kovalev A A and Soifer V A 2011 Optical Memory and Neural Networks (Information Optics) 19 273 [46] Sun F, Ma Y G, Ge X V and He S L 2013 Opt. Express 21 7328 [47] Xu L and Chen H Y 2014 Nat. Photon. 9 15 [48] Leonhardt U 2006 Science 312 1777 [49] Yin Y H, Li J and Chen H Y 2020 Opt. Express 28 37218 [50] Luneburg R K 1964 Mathematical theory of optics (California: University of California Press) [51] Chen H Y 2018 Phys. Rev. A 98 043843 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|