Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 074201    DOI: 10.1088/1674-1056/abe373
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Single pixel imaging based on semi-continuous wavelet transform

Chao Gao(高超)1, Xiaoqian Wang(王晓茜)1,†, Shuang Wang(王爽)1, Lidan Gou(苟立丹)1, Yuling Feng(冯玉玲)1, Guangyong Jin(金光勇)2, and Zhihai Yao(姚治海)1,‡
1 Department of Physics, Changchun University of Science and Technology, Changchun 130022, China;
2 Jilin Key Laboratory of Solid Laser Technology and Application, Changchun University of Science and Technology, Changchun 130022, China
Abstract  Single pixel imaging is a novel imaging technique, and it becomes a focus of research in recent years due to its advantages such as high lateral resolution and high robustness to noise. Imaging speed is one of the critical shortcomings, which limits the further development and applications of this technique. In this paper, we focus on the issues of imaging efficiency of a single pixel imaging system. We propose semi-continuous wavelet transform (SCWT) protocol and introduce the protocol into the single pixel imaging system. The proposed protocol is something between continuous wavelet transform and discrete wavelet transform, which allows the usage of those smooth (usually non-orthogonal, and they have advantages in representing smooth signals compressively, which can improve the imaging speed of single pixel imaging) wavelets and with limited numbers of measurements. The proposed imaging scheme is studied, and verified by simulations and experiments. Furthermore, a comparison between our proposed scheme and existing imaging schemes are given. According to the results, the proposed SCWT scheme is proved to be effective in reconstructing a image compressively.
Keywords:  single pixel imaging      wavelet transform      modulation of light source  
Received:  01 December 2020      Revised:  02 February 2021      Accepted manuscript online:  05 February 2021
PACS:  42.30.Wb (Image reconstruction; tomography)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the Natural Science Foundation of Jilin Province, China (Grand No. YDZJ202101ZYTS030).
Corresponding Authors:  Xiaoqian Wang, Zhihai Yao     E-mail:  xqwang21@163.com;yaozh@cust.edu.cn

Cite this article: 

Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海) Single pixel imaging based on semi-continuous wavelet transform 2021 Chin. Phys. B 30 074201

[1] Klyshko D 1988 Phys. Lett. A 132 299
[2] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[3] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[4] Cao D Z, Xiong J and Wang K 2005 Phys. Rev. A 71 013801
[5] Cao D Z, Li Q C, Zhang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[6] Li H G, Zhang Y T, Xiong J, Wang K G and Cao D Z 2008 Chin. Phys. B 17 4510
[7] Shapiro J H 2008 Phys. Rev. A 78 061802
[8] Gong W L and Han S S 2015 Sci. Rep. 5 9280
[9] Gong W L and Han S S 2012 Phys. Lett. A 376 1519
[10] Meng S Y, Shi W W, Ji J, Tao J J, Fu Q, Chen X H and Wu L A 2020 Chin. Phys. B 29 128704
[11] Dixon P B, Howland G A, Chan K W C, OSullivan-Hale C, Rodenburg B, Hardy N D, Shapiro J H, Simon D, Sergienko A, Boyd R, et al. 2011 Phys. Rev. A 83 051803
[12] Meyers R E, Deacon K S and Shih Y 2011 Appl. Phys. Lett. 98 111115
[13] Gao C, Wang X, Gou L, Feng Y, Cai H, Wang Z and Yao Z 2019 Laser Phys. Lett. 16 065202
[14] Yin M Q, Wang L and Zhao S M 2019 Chin. Phys. B 28 94201
[15] Yang Z, Zhao L J, Zhao X L, Qin W and Li J L 2016 Chin. Phys. B 25 24202
[16] Watts C M, Shrekenhamer D, Montoya J, Lipworth G, Hunt J, Sleasman T, Krishna S, Smith D R and Padilla W J 2014 Nat. Photon. 8 605
[17] Clemente P, Durán V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391
[18] Tanha M, Kheradmand R and Ahmadi-Kandjani S 2012 Appl. Phys. Lett. 101 101108
[19] Sun B, Edgar M, Bowman R, Vittert L, Welsh S S, Bowman A and Padgett M J 2013 Science 340 844
[20] Ferri F, Magatti D, Lugiato L and Gatti A 2010 Phys. Rev. Lett. 104 253603
[21] Sun B, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892
[22] Gao C, Wang X Q, Wang Z F, Li Z, Du G J, Chang F and Yao Z H 2017 Phys. Rev. A 96 023838
[23] Kyuki, Shibuya, Katsuhiro, Nakae, Yasuhiro, Mizutani, Tetsuo and Iwata 2015 Opt. Rev. 22 897
[24] Li M F, Yan L, Yang R and Liu Y X 2019 Acta Phys. Sin. 68 064202 (in Chinese)
[25] Khamoushi S M M, Nosrati Y and Tavassoli S H 2015 Opt. Lett. 40 3452
[26] Zhang Z, Ma X and Zhong J 2014 Nat. Commun. 6 6225
[27] Katkovnik V and Astola J 2012 J. Opt. Soc. Am. A 29 1556
[28] Wang L and Zhao S 2020 Chin. Phys. B 29 24204
[29] Abmann M and Bayer M 2013 Sci. Rep. 3 1545
[30] Yu W K, Li M F, Yao X R, Liu X F, Wu L A and Zhai G J 2014 Opt. Express 22 7133
[31] Dai H, Gu G, He W, Liao F, Zhang J, Liu X and Chen Q 2014 Appl. Opt. 53 6619
[32] Xi M, Chen H, Yuan Y, Wang G, He Y, Liang Y, Liu J, Zheng H and Xu Z 2019 Opt. Express 27 32349
[1] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[2] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[3] Wavelet optimization for applying continuous wavelet transform to maternal electrocardiogram component enhancing
Qiong Yu(于琼), Qun Guan(管群), Ping Li(李萍), Tie-Bing Liu(刘铁兵), Jun-Feng Si(司峻峰), Ying Zhao(肇莹), Hong-Xing Liu(刘红星), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2017, 26(11): 118702.
[4] Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform
Wang Xiang-Li (汪祥莉), Wang Wen-Bo (王文波). Chin. Phys. B, 2015, 24(8): 080203.
[5] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[6] Extraction and verification of coherent structures in near-wall turbulence
Hu Hai-Bao (胡海豹), Du Peng (杜鹏), Huang Su-He (黄苏和), Wang Ying (王鹰). Chin. Phys. B, 2013, 22(7): 074703.
[7] Wavelet transform for Fresnel-transformed mother wavelets
Liu Shu-Guang(刘述光), Chen Jun-Hua(陈俊华), and Fan Hong-Yi(范洪义) . Chin. Phys. B, 2011, 20(12): 120305.
[8] Inversion formula and Parseval theorem for complex continuous wavelet transforms studied by entangled state representation
Hu Li-Yun(胡利云) and Fan Hong-Yi(范洪义). Chin. Phys. B, 2010, 19(7): 074205.
[9] Wavelet-based multifractal analysis of DNA sequences by using chaos-game representation
Han Jia-Jing(韩佳静) and Fu Wei-Juan (符维娟) . Chin. Phys. B, 2010, 19(1): 010205.
[10] Network traffic prediction by a wavelet-based combined model
Sun Han-Lin(孙韩林), Jin Yue-Hui(金跃辉), Cui Yi-Dong(崔毅东),and Cheng Shi-Duan(程时端) . Chin. Phys. B, 2009, 18(11): 4760-4768.
[11] Fractional Fourier transform of Cantor sets: further numerical study
Gao Qiong(高穹), Liao Tian-He(廖天河), and Cui Yuan-Feng(崔远峰). Chin. Phys. B, 2008, 17(6): 2018-2022.
[12] Blind source separation of multichannel electroencephalogram based on wavelet transform and ICA
You Rong-Yi (游荣义), Chen Zhong (陈忠). Chin. Phys. B, 2005, 14(11): 2176-2180.
[13] OPTICAL REALIZATION OF WAVELET TRANSFORM WITH A SINGLE LENS
Wang Qu-quan (王取泉), Xiong Gui-guang (熊贵光), Li Cheng-fang (李承芳), Zhang Su-huai (张苏淮), Wang Lin (王琳). Chin. Phys. B, 2001, 10(11): 1028-1031.
No Suggested Reading articles found!