Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094201    DOI: 10.1088/1674-1056/ac5884
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dual-function terahertz metasurface based on vanadium dioxide and graphene

Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文)
Centre for THz Research, China Jiliang University, Hangzhou 310018, China
Abstract  A dual-function terahertz metasurface based on VO2 and graphene is proposed in this paper. It consists of a gold layer embedded with VO2 patches, a SiO2 spacer layer, a VO2 layer, graphene and a SiO2 spacer substrate. When the bottom VO2 layer is in the metallic state, the designed metasurface can achieve absorption. When the top VO2 patches are in the metallic state, the proposed metasurface can be used as a single-band absorber with terahertz absorptance of 99.7% at 0.736 THz. When the top VO2 patches are in the insulating state, the designed structure behaves as a dual-band absorber with an absorptance of 98.9% at 0.894 THz and 99.9% at 1.408 THz. In addition, the absorber is polarization insensitive and keeps good performance at large angles of incidence. When the bottom VO2 is in an insulating state, the metasurface shows electromagnetically induced transparency. The transparent window can be dynamically regulated by controlling the chemical potential of graphene. The proposed metasurface exhibits the advantages of terahertz absorption, electromagnetically induced transparency and dynamic control, which provides more options for the design of terahertz devices in the future.
Keywords:  metasurface      switchable terahertz absorber      electromagnetically induced transparency  
Received:  08 October 2021      Revised:  24 January 2022      Accepted manuscript online:  25 February 2022
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871355 and 61831012), the Talent Project of Zhejiang Provincial Department of Science and Technology (Grant No. 2018R52043), Zhejiang Key Research and Development Project of China (Grant Nos. 2021C03153 and 2022C03166), and Research Funds for the Provincial Universities of Zhejiang (Grant No. 2020YW20).
Corresponding Authors:  Jiu-Sheng Li     E-mail:  lijsh@cjlu.edu.cn

Cite this article: 

Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文) Dual-function terahertz metasurface based on vanadium dioxide and graphene 2022 Chin. Phys. B 31 094201

[1] Verleur H, Barker A and Berglund C 1968 Phys. Rev. 172 788
[2] Jeong Y, Han S, Rhie J, Kyoung J, Choi J, Park N, Hong S, Kim B, Kim H and Kim H 2015 Nano Lett. 15 7181
[3] Liu J and Fan L 2020 Microw. Opt. Technol. Lett. 62 1681
[4] Wen Q, Zhang H, Yang Q, Xie Y, Chen K and Liu Y 2010 Appl. Phys. Lett. 97 021111
[5] Liu L, Kang L, Mayer T and Werner D 2016 Nat. Commun. 7 13236
[6] Li Q, Liu S, Zhang X, Wang S and Chen T 2015 Opt. Express 28 8792
[7] Choi S, Kyoung J, Kim H, Park H, Park D, Kim B, Ahn Y, Rotermund F, Kim H, Ahn K and Kim D 2011 Appl. Phys. Lett. 98 071105
[8] Choi H, Ahn J, Jung J, Noh T and Kim D 1996 Phys. Rev. B 54 4621
[9] Liu H, Wang Z, Li L, Fan Y and Tao Z 2019 Sci. Rep. 9 5751
[10] Dong X, Luo X, Zhou Y, Lu Y, Hu F, Xu X and Li G 2020 Opt. Express 28 30675
[11] Deng Y and Song Z 2020 Opt. Mater. 105 109972
[12] Zhang Y, Tan Y, Stormer H and Kim P 2005 Nature 438 201
[13] Xiang Y, Wang L, Lin Q, Xia S, Qin M and Zhai X 2019 IEEE Photon. Technol. Lett. 31 483
[14] Sun H, Zhao L, Dai J, Liang Y, Guo J, Meng H, Liu H, Dai Q and Wei Z 2020 Nanomaterials 10 1359
[15] Zhu H, Zhang Y, Ye L, Li Y, Xu Y and Xu R 2020 Opt. Express 28 38626
[16] Liu W, Xu J and Song J 2021 Opt. Express 29 23331
[17] Wang S, Kang L and Werner D 2018 Sci. Rep. 8 189
[18] Kaipa C, Yakovlev A, Hanson G, Padooru Y, Medina F and Mesa F 2012 Phys. Rev. B 85 245407
[19] Gusynin V, Sharapov S and Carbotte J 2007 J. Phys.:Condens. Matter 19 026222
[20] Smith D, Vier D, Koschny T and Soukoulis C 2005 Phys. Rev. E. 71 036617
[21] Meng F, Wu Q, Erni D, Wu K and Lee J 2012 IEEE Trans. Microw. Theory Tech. 60 3013
[22] Ma. Y, Li Z, Yang Y, Huang R, Singh R, Zhang S, Gu J, Tian Z, Han J and Zhang W 2011 Opt. Mater. Express 1 391
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[7] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[8] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[9] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[10] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[11] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[12] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[13] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[14] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[15] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
No Suggested Reading articles found!