Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 094206    DOI: 10.1088/1674-1056/ac685e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers

Xi-Hang Yang(杨西杭)1,2, Fen-Xiang Wu(吴分翔)1,†, Yi Xu(许毅)1, Jia-Bing Hu(胡家兵)1,2, Pei-Le Bai(白培乐)1,2, Hai-Dong Chen(陈海东)1,2, Xun Chen(陈洵)1,2, and Yu-Xin Leng(冷雨欣)1,‡
1 Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We present a cascaded nonlinear spectral broadening scheme for Nd-doped lasers, featuring with long pulse duration and high average power. This scheme is based on two multi-pass cells (MPCs) and one multiple-plate supercontinuum generation (MPSG), and the numerical investigation is driven by a home-made Nd-doped fiber laser with 12 ps pulse duration, 50 kHz repetition rate and 100 W average power. The MPC-based first two stages allow us to broaden the pulse spectrum to 4 nm and 43 nm respectively, and subsequently, the MPSG-based third stage allows us to reach 235 nm spectral bandwidth. This broadened spectrum can support a Fourier-transfer-limited pulse duration of 9.8 fs, which is shorter than three optical cycles. To the best of our knowledge, it is the first time to demonstrate the possibility of few-cycle pulses generation based on the 10 ps level Nd-doped lasers. Such few-cycle and high average power laser sources should be attractive and prospective, benefiting from the characteristics of structure compact, low-cost and flexibility.
Keywords:  nonlinear spectral broadening      picosecond lasers      high average power  
Received:  12 January 2022      Revised:  13 April 2022      Accepted manuscript online:  20 April 2022
PACS:  42.60.By (Design of specific laser systems)  
  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61925507), the National Key R&D Program of China (Grant No. 2017YFE0123700),the Strategic Priority Research Program of Chinese Academic Sciences (Grant No. XDB1603), the Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX02), the Shanghai Natural Science Foundation (Grant No. 20ZR1464600), the Program of Shanghai Academic/Technology Research Leader (Grant No. 18XD1404200), the Shanghai Sailing Program (Grant No. 21YF1453800), and Youth Innovation Promotion Association of Chinese Academic Sciences (Grant No. Y202059).
Corresponding Authors:  Fen-Xiang Wu, Yu-Xin Leng     E-mail:  wufengxiang@siom.ac.cn;lengyuxin@mail.siom.ac.cn

Cite this article: 

Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣) Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers 2022 Chin. Phys. B 31 094206

[1] Kärtner F X 2004 Few-Cycle Laser Pulse Generation and Its Applications (Berlin:Springer) pp. 295-440
[2] Mashiko H, Gilbertson S M, Li C Q, Moon E and Chang Z H 2008 Phys. Rev. A 77 063423
[3] Faure J, Gustas D, Guénot D, Vernier A, Böhle F, Ouillé M, Haessler S, Lopez-Martens R and Lifschitz A F 2019 Plasma Phys. Control. Fusion 61 014012
[4] Graf U, Fiess M, Schultze M, Kienberger R, Krausz F and Goulielmakis E 2008 Opt. Express 16 18956
[5] Stanfield M M, Beier N F, Hakimi S, Allison H, Farinella D M, Hussein A E, Tajima T and Dollar F J 2021 Opt. Express 29 9123
[6] Chini M, Zhao K and Chang Z H 2014 Nat. Photon. 8 178
[7] Goulielmakis E, Schultze M, Hofstetter M, Yakovlev V S, Gagnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
[8] Kim I J, Kim C M, Kim H T, Lee G H, Lee Y S, Park J Y, Cho D J and Nam C H 2005 Phys. Rev. Lett 94 243901
[9] Rothhardt J, Hädrich S, Delagnes J C, Cormier é and Limpert J 2017 Laser Photon. Rev. 11 1700043
[10] Nagy T, Simon P and Veisz L 2021 Adv. Phys. X 6 1845795
[11] Hrisafov S, Pupeikis J, Chevreuil P, Brunner F, Phillips C R, Gallmann L and Keller U 2020 Opt. Express 28 40145
[12] Kessel A, Leshchenko V E, Jahn O, Kruger M, Münzer A, Schwarz A, Pervak V, Trubetskov M, Trushin S A, Krausz F, Major Z and Karsch S 2018 Optica 5 434
[13] Matsubara E, Yamane K, Sekikawa T and Yamashita M 2007 J. The Opt. Soc. Am. B 24 985
[14] Bohman S, Suda A, Kanai T, Yamaguchi S and Midorikawa K 2010 Opt. Lett. 35 1887
[15] Fan G, Carpeggiani P A, Tao Z S, Coccia G, Safaei R, Kaksis E, Pugžlys A, Légaré F, Schmidt B E and Baltuska A 2021 Opt. Lett. 46 896
[16] Balla P, Wahid A B, Sytcevich I, et al. 2020 Opt. Lett. 45 2572
[17] Lavenu L, Natile M, Guichard F, Zaouter Y, Délen X, Hanna M, Mottay E P and Georges P M 2018 Opt. Lett. 43 2252
[18] Weitenberg J, Vernaleken A, Schulte J, Ozawa A, Sartorius T A, Pervak V, Hoffmann H D, Udem T, Russbüldt P and Hänsch T W 2017 Opt. Express 25 20502
[19] Schulte J, Sartorius T A, Weitenberg J, Vernaleken A and Russbueldt P 2016 Opt. Lett. 41 4511
[20] Vicentini E, Wang Y C, Gatti D, Gambetta A, Laporta P, Galzerano G, Curtis K, Mcewan K, Howle C R and Coluccelli N 2020 Opt. Express 28 4541
[21] Fritsch K, Poetzlberger M, Pervak V, Brons J and Pronin O 2018 Opt. Lett. 43 4643
[22] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica 1 400
[23] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P P, Huang H D, Zhong S Y, Jiang Y J, Fang, S B, Hou X and Wei Z Y 2017 Opt. Lett. 42 474
[24] Seo M, Tsendsuren K, Mitra S, Kling M F and Kim D 2020 Opt. Lett. 45 367
[25] Tsai C L, Meyer F, Omar A, Wang Y C, Liang A Y, Lu C H, Hoffmann M, Yang S D and Saraceno C J 2019 Opt. Lett. 44 4115
[26] Song J J, Wang Z H, Wang X Z, Lü R C, Teng H, Zhu J F and Wei Z Y 2021 Chin. Opt. Lett. 19 093201
[27] Song J J, Wang Z H, Lv R C, Wang X Z, Teng H, Zhu J F and Wei Z Y 2021 Appl. Phys. B 127 1
[28] Yang G and Shen Y R 1984 Opt. Lett. 9 510
[29] Brabec T and Krausz F 1997 Phys. Rev. Lett. 78 3282
[30] Gaeta A L 2000 Phys. Rev. Lett. 84 3582
[1] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
No Suggested Reading articles found!