Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040501    DOI: 10.1088/1674-1056/21/4/040501
GENERAL Prev   Next  

Dispersion compensation in an open-loop all-optical chaotic communication system

Liu Hui-Jie(刘慧杰)a)b)†, Ren Bin(任斌)b), and Feng Jiu-Chao(冯久超)a)
a. School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China;
b. Department of Electronic Engineering, Dongguan University of Technology, Dongguan 523808, China
Abstract  The optical chaotic communication system using open-loop fiber transmission is studied under strong injection conditions. The optical chaotic communication system with open-loop configuration is studied using fiber transmission under strong injection conditions. The performances of fiber links composed of two types of fiber segments in different dispersion compensation maps are compared by testing the quality of the recovered message with different bit rates and encrypted by chaotic modulation (CM) or chaotic shift keying (CSK). The result indicates that the performance of the pre-compensation map is always worst. Two types of symmetrical maps are identical whatever the encryption method and bit-rate of message are. For the transmitting and the recovering of message of lower bit rate (1 Gb/s), the post-compensation map is the best scheme. However, for the message of higher bit rate (2.5 Gb/s), the parameters in communication system need to be modified properly in order to adapt to the high-speed application. Meanwhile, two types of symmetrical maps are the best scheme. In addition, the CM method is superior to the CSK method for high-speed applications. It is in accordance with the result in a back-to-back configuration system.
Keywords:  chaotic communication      dispersion compensation      semiconductor lasers      strong injection      open-loop configuration  
Received:  29 August 2011      Revised:  24 October 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China(Grant No.60872123),the Joint Fund of the NationalNatural Science Foundation and the Guangdong Provincial Natural Science Foundation,China(Grant No.U0835001),and theGuangdong Provincial Natural Science Foundation(Grant No.S2011010002144)
Corresponding Authors:  Liu Hui-Jie, E-mail:Liuhj@dgut.edu.cn     E-mail:  Liuhj@dgut.edu.cn

Cite this article: 

Liu Hui-Jie(刘慧杰), Ren Bin(任斌), and Feng Jiu-Chao(冯久超) Dispersion compensation in an open-loop all-optical chaotic communication system 2012 Chin. Phys. B 21 040501

[1] Liu H J and Feng J C 2009 Acta Phys. Sin. 58 1484 (in Chinese)
[2] Kanakidis D, Argyris A and Syvridis D 2003 IEEE Lightwave Technology 21 750
[3] Kanakidis D, Bogris A, Argyris A and Syvridis D 2004 IEEE Lightwave Technology 22 2256
[4] Argyris A and Kanakidis D 2005 IEEE Quantum Electronics 41 892
[5] Yan S L 2006 Acta Phys. Sin. 55 6267 (in Chinese)
[6] Wu J G, Wu Z M and Lin X D 2005 Acta Phys. Sin 54 4170 (in Chinese)
[7] Y S L, Chi Z Y and Chen W J 2004 Chin. J. Ins. Commun. 25 78 (in Chinese)
[8] Wu L and Zhu S Q 2003 Chin. Phys. 12 300
[9] Wu L and Zhu S Q 2003 Phys. Lett. A 308 157
[10] Wu L and Zhu S Q 2004 Commun. Theor. Phys. 41 225
[11] Sugawara T, Tachikawa M, Tsukamoto T and Shimizu T 1994 Phys. Rev. Lett. 72 3502
[12] Tang L M, Dykstra R and Heckenberg N R 1996 Phys. Rev. Lett. 54 5317
[13] Yan S L 2005 Chin. J. Lasers 32 1503 (in Chinese)
[14] Li X F, Pan W, Luo B and Ma D 2006 IEEE Quantum Electronics 42 953
[15] Kanakidis D and Argyris A 2006 IEEE Lightwave Technology 24 335
[16] Argyris A, Kanakidis D, Bogris A and Syvridis D 2004 IEEE Quantum Electronics 10 927
[17] Yan S L 2005 Elec. Sin. 33 266 (in Chinese)
[18] Yan S L 2005 Acta Phys. Sin. 54 2000 (in Chinese)
[19] Argyris A and Syvridis D 2004 IEEE Lightwave Technology 22 1272
[20] Argyris A, Kanakidis D and Dimitris S 2003 Proc. Optical Fiber Communication Conference (Atlanta, USA)
[21] Paul J, Lee M W and Shore K A 2005 IEEE Photonics Technology Lett. 17 920
[22] Valerio A L, Mauro B, Sabina M, Michele N and Biagio P 2005 IEEE Photonics Technology Lett. 17 1995
[23] Kouomou Y C, Colet P, Larger L and Gastaud N 2005 IEEE Quantum Electronics 41 156
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[5] Square microcavity semiconductor lasers
Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴). Chin. Phys. B, 2018, 27(11): 114212.
[6] Wideband dispersion removal and mode separation of Lamb waves based on two-component laser interferometer measurement
Yan-Feng Xu(徐琰锋), Wen-Xiang Hu(胡文祥). Chin. Phys. B, 2017, 26(9): 094301.
[7] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[8] Dispersion compensation for an ultrathin metal film using LCD–CCD system
Dai Yu (代煜), Zhang Jian-Xu (张建勋). Chin. Phys. B, 2012, 21(10): 104203.
[9] High-speed chaotic communication using an optical fibre ring as a key
Zou Lin(邹琳), Feng Ye(冯野), Yang Yi-Biao(杨毅彪), Wang An-Bang(王安帮), Yang Ling-Zhen(杨玲珍), and Zhang Jian-Zhong(张建忠) . Chin. Phys. B, 2011, 20(9): 094209.
[10] Polarization mode dispersion compensation in a novel dual polarization differential quadrature phase shift keying system
Qin Jiang-Xing(秦江星), Xi Li-Xia(席丽霞), Zhang Xiao-Guang(张晓光), and Tian Feng(田凤) . Chin. Phys. B, 2011, 20(11): 114201.
[11] Investigation of the influence of key parameters on the system performance in all-ptical label switching based on FSK/ASK orthogonal modulation format
Wei Lai(魏莱), Xin Xiang-Jun(忻向军), Ma Jian-Xin(马建新), Zhang Qi(张琦), Wang Kui-Ru(王葵如), Yu Chong-Xiu(余重秀), and Liu Bo(刘博). Chin. Phys. B, 2009, 18(5): 1861-1866.
[12] Improving performance of optical fibre chaotic communication by dispersion compensation techniques
Zhang Jian-Zhong(张建忠), Wang Yun-Cai(王云才), and Wang An-Bang(王安帮). Chin. Phys. B, 2008, 17(9): 3264-3269.
[13] Temperature or strain induced adjustable-chirp characteristics of uniform fibre grating with tapered metal coating
Liu Yan(刘艳), Li Bin(李彬), Zheng Kai(郑凯), Tan Zhong-Wei(谭中伟), Chen Yong(陈勇), Wang Yan Hua(王燕花), Ren Wen-Hua(任文华), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2007, 16(6): 1694-1699.
[14] The system of L-band 2×10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation
Yan Feng-Ping(延凤平), Tong Zhi(童治), Wei Huai(魏淮), Pei Li(裴丽), Ning Ti-Gang(宁提纲), Fu Yong-Jun (傅永军), Zheng Kai(郑凯), Wang Lin (王琳), Li Yi-Fan (李一凡), Gong Tao-Rong(龚桃荣), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2007, 16(6): 1700-1703.
[15] Suppression of the interactions between fibre gratings used as dispersion compensators in dense wavelength-division multiplexing systems
Tan Zhong-Wei(谭中伟), Ning Ti-Gang(宁提纲), Liu Yan(刘艳), Tong Zhi(童治), and Jian Shui-Sheng(简水生). Chin. Phys. B, 2006, 15(8): 1819-1823.
No Suggested Reading articles found!