Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 028904    DOI: 10.1088/1674-1056/21/2/028904
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An evolving network model with modular growth

Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智)
School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module.
Keywords:  evolving      modular growth      small-world network      scale-free network  
Received:  15 July 2011      Revised:  28 September 2011      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51078165) and the Fundamental Research Funds for Central Universities, China (Grant No. HUST 2010MS030).
Corresponding Authors:  Liu Peng,lpengn@yahoo.cn     E-mail:  lpengn@yahoo.cn

Cite this article: 

Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智) An evolving network model with modular growth 2012 Chin. Phys. B 21 028904

[1] Albert R and Barabási A L 2002 Mod. Phys. Rev. 74 47
[2] Jiang B and Claramunt C 2004 Environment and Planning B 31 151
[3] Li Y, Cao H D, Shan X M, Ren Y and Yuan J 2009 Chin. Phys. B 18 1721
[4] Montis A D, Barthel閙y M, Chessa A and Vespignanni A 2007 Environment and Planning B 34 905
[5] Lammer S, Gehlsen B D and Helbing 2006 Physica A 363 89
[6] Porta S, Crucitti P and Latora V 2006 Physica A 369 853
[7] Watts D J and Strogatz S H 1998 Nature (London) 393 440
[8] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[9] Barabási A L and Albert R 1999 Science 286 509
[10] Cui A X, Fu Y, Shang M S, Chen D B and Zhou T 2011 Acta Phys. Sin. 60 038901 (in Chinese)
[11] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[12] Girvan M and Newman M E J 2002 Proc. Natl. Acad. Sci. USA 99 7821
[13] Palla G, Derényi I, Fárkas I and Vicsek T 2005 Nature (London) 435 814
[14] Alves N A 2007 Phys. Rev. E 76 036101
[15] Ravasz E, Somera A L, Mongru Z N, Oltvai Z N and Barab醩i A L 2002 Science 297 1551
[16] Rives A W and Galitski T 2003 Proc. Natl. Acad. Sci. USA 100 1128
[17] Eriksen K A, Simonsen I, Maslov S and Sneppen K 2003 Phys. Rev. Lett. 90 148701
[18] Guimerá R, Mossa S, Turtschi A and Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794
[19] Li C G and Maini P K 2005 J. Phys. A: Math. Gen. 38 9741
[20] Nakazato K and Arita T 2007 Physica A 376 673
[21] Cui D, Gao Z Y and Zheng J F 2009 Chin. Phys. B 18 516
[22] Dorogovtsev S N and Mendes J F F 2001b Phys. Rev. E 63 056125
[23] Barab醩i A L, Jeong H, N閐a Z, Ravasz E, Schubert A and Vicsek T 2002 Physica A 311 590
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[3] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[4] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[5] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[6] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[7] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[8] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[9] Scaling of weighted spectral distribution in weighted small-world networks
Bo Jiao(焦波), Xiao-Qun Wu(吴晓群). Chin. Phys. B, 2017, 26(2): 028901.
[10] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[11] Nano watermill driven by revolving charge
Zhou Xiao-Yan (周晓艳), Kou Jian-Long (寇建龙), Nie Xue-Chuan (聂雪川), Wu Feng-Min (吴锋民), Liu Yang (刘扬), Lu Hang-Jun (陆杭军). Chin. Phys. B, 2015, 24(7): 074702.
[12] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[13] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[14] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[15] Optimal network structure to induce the maximal small-world effect
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(2): 028902.
No Suggested Reading articles found!