Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038901    DOI: 10.1088/1674-1056/26/3/038901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multiple-predators-based capture process on complex networks

Rajput Ramiz Sharafat1, Cunlai Pu(濮存来)1,2, Jie Li(李杰)1, Rongbin Chen(陈荣斌)1, Zhongqi Xu(许忠奇)1
1 Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA
Abstract  The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter α. We derive the distribution of the lamb's lifetime and the expected lifetime <T>. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. Moreover, we study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than on large-degree nodes to prolong the lifetime of the lamb. The dense or homogeneous network structures are against the survival of the lamb. We also discuss how to improve the capture efficiency in our model.
Keywords:  capture process      random walk      scale-free networks  
Received:  11 November 2016      Revised:  06 December 2016      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  05.40.Fb (Random walks and Levy flights)  
  05.60.Cd (Classical transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61304154), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133219120032), the Postdoctoral Science Foundation of China (Grant No. 2013M541673), and China Postdoctoral Science Special Foundation (Grant No. 2015T80556).
Corresponding Authors:  Cunlai Pu     E-mail:  pucunlai@njust.edu.cn

Cite this article: 

Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇) Multiple-predators-based capture process on complex networks 2017 Chin. Phys. B 26 038901

[1] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press)
[2] Boccaletti S, Bianconi G and Criado R 2014 Phys. Rep. 544 1
[3] Mendes J F F, Dorogovtsev S N and Goltsev A V 2014 Summer Solstice 2014 27
[4] Barrat A, Barthelemy M and Vespignani A 2008 Dynamical Processes on Complex Networks (Cambridge: Cambridge University Press)
[5] Granell C, Gómez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
[6] Caldarelli G and Vespignani A 2007 Large Scale Structure and Dynamics of Complex Networks (Sigapore: World Scientific)
[7] Watts D J and Strogatz S H 1998 Nature 393 440
[8] Muldoon S F, Bridgeford E W and Bassett D S 2006 Sci. Rep. 6 22057
[9] Barabási A L 2009 Science 325 412
[10] Timár G, Dorogovtsev S N and Mendes J F F 2016 Phys. Rev. E 94 022302
[11] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[12] Yan G, Zhou T and Hu B 2006 Phys. Rev. E 73 046108
[13] Wang W X, Wang B H, Yin C Y 2006 Phys. Rev. E 73 026111
[14] Solé-Ribalta A, Gómez S and Arenas A 2016 Phys. Rev. Lett. 116 108701
[15] Du W B, Zhou X L and Jusup M 2016 Sci. Rep. 6 19059
[16] Pu C, Li S and Yang X 2016 Physica A 447 261
[17] Pastor-Satorras R, Castellano C and Van Mieghem P 2015 Rev. Mod. Phys. 87 925
[18] Shen Z, Cao S and Wang W X 2016 Phys. Rev. E 93 032301
[19] Pu C, Li S and Yang X X 2016 Physica A 446 129
[20] Pu C, Li S and Yang J 2015 Physica A 432 230
[21] Yang H X, Tang M and Lai Y C 2015 Phys. Rev. E 91 062817
[22] Min B, Do Yi S and Lee K M 2014 Phys. Rev. E 89 042811
[23] Pocock M J O, Evans D M and Memmott J 2012 Science 335 973
[24] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[25] Holme P, Kim B J and Yoon C N 2002 Phys. Rev. E 65 056109
[26] Pu C, Li S and Michaelson A 2015 Phys. Lett. A 379 1633
[27] Pu C L and Cui W 2015 Physica A 419 622
[28] Kovács I A and Barabási A L 2015 Nature 524 38
[29] Dörfler F and Bullo F 2014 Automatica 50 1539
[30] Lu J and Chen G 2005 IEEE Transactions on Automatic Control 50 841
[31] Liu Y Y, Slotine J J and Barabái A L 2011 Nature 473 167
[32] Ruths J and Ruths D 2014 Science 343 1373
[33] Wang X F and Chen G 2002 Physica A 310 521
[34] Yan G, Tsekenis G and Barzel B 2015 Nat. Phys. 11 779
[35] Yuan Z, Zhao C and Di Z 2013 Nat. Commu. 4 2447
[36] Pu C L, Pei W J and Michaelson A 2012 Physica A 391 4420
[37] Lü L and Zhou T 2011 Physica A 390 1150
[38] Cui W, Pu C and Xu Z 2016 Physica A 457 202
[39] Xu Z, Pu C and Yang J 2016 Physica A 456 294
[40] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[41] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[42] Zhao M, Zhou T, Wang B H, Yan G, Yang H J and Bai W J 2006 Physica A 371 773
[43] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[44] Klafter J and Sokolov I M 2011 First Steps in Random Walks: From Tools to Applications (Oxford: Oxford University Press)
[45] White R T 2015 Random Walks on Random Lattices and Their Applications (Florida Institute of Technology)
[46] Lovász L 1993 Combinatorics, Paul erdos is eighty 2 1
[47] Burioni R and Cassi D 2005 J. Phys. A 38 R45
[48] Yoon S, Lee S and Yook S H 2007 Phys. Rev. E 75 046114
[49] Newman M E J 2005 Soc. Networks 27 39
[50] Rosvall M and Bergstrom C T 2008 Proc. Natl. Acad. Sci. 105 1118
[51] Zhou H and Distance 2003 Phys. Rev. E 67 061901
[52] Backstrom L and Leskovec J 2011 Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM 2011 635
[53] Millán V M L, Cholvi V and Anta A F 2016 Comp. Net. 103 165
[54] Aalsalem M Y, Khan W Z and Saad N M 2016 PlOS One 11 e0158072
[55] Fronczak A and Fronczak P 2009 Phys. Rev. E 80 016107
[56] Viswanathan G M, Buldyrev S V and Havlin S 1999 Nature 401 911
[57] Huang B, Feng Y and Li X 2015 International Conference on Information and Communications Technologies (ICT 2015) IET 2015 1
[58] Berryman A A 1992 Ecology 73 1530
[59] Zumofen G and Blumen A 1982 J. Chem. Phys. 76 3713
[60] Barnes C, Maxwell D and Reuman D C 2010 Ecology 91 222
[61] Lee S, Yook S H and Kim Y 2006 Phys. Rev. E 74 046118
[62] Wang S P and Pei W J 2008 Physica A 387 4699
[63] Derek de Solla Price 1976 J. Am. Soc. Inf. Sci. 27 292
[64] Ou Q, Jin Y D, Zhou T, Wang B H and Yin B Q 2007 Phys. Rev. E 75 021102
[65] Yan G, Zhou T, Wang J, Fu Z Q and Wang B H 2005 Chin. Phys. Lett. 22 510
[66] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[67] Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
[68] Yang S J 2005 Phys. Rev. E 71 016107
[69] Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data (TKDD) 1 2
[70] Köhler S, Bauer S, Horn D and Robinson P N 2008 Am. J. Hum. Genet. 82 949
[1] Biased random walk with restart for essential proteins prediction
Pengli Lu(卢鹏丽), Yuntian Chen(陈云天), Teng Zhang(张腾), and Yonggang Liao(廖永刚). Chin. Phys. B, 2022, 31(11): 118901.
[2] Charge transfer in low-energy collisions ofBe3+ and B4+ ions with He
Kun Wang(王堃), Yi-Zhi Qu(屈一至), Chun-Hua Liu(刘春华), Ling Liu(刘玲), Yong Wu(吴勇), H P Liebermann, Robert J. Buenker. Chin. Phys. B, 2020, 29(9): 093401.
[3] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[4] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
[5] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[6] Nodes and layers PageRank centrality for multilayer networks
Lai-Shui Lv(吕来水), Kun Zhang(张琨), Ting Zhang(张婷), Meng-Yue Ma(麻孟越). Chin. Phys. B, 2019, 28(2): 020501.
[7] Diffusional inhomogeneity in cell cultures
Jia-Zheng Zhang(张佳政), Na Li(李娜), Wei Chen(陈唯). Chin. Phys. B, 2018, 27(2): 028705.
[8] Derivation of persistent time for anisotropic migration of cells
Yan-Ping Liu(刘艳平), Xiao-Cui Zhang(张晓翠), Yu-Ling Wu(吴宇宁), Wen Liu(刘雯), Xiang Li(李翔), Ru-Chuan Liu(刘如川), Li-Yu Liu(刘雳宇), Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2017, 26(12): 128707.
[9] Anomalous transport in fluid field with random waiting time depending on the preceding jump length
Hong Zhang(张红), Guo-Hua Li(李国华). Chin. Phys. B, 2016, 25(11): 110504.
[10] Decoherence in optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(8): 080307.
[11] Rotational stretched exponential relaxation in random trap-barrier model
Ekrem Aydıner. Chin. Phys. B, 2015, 24(7): 070501.
[12] Effects of systematic phase errors on optimized quantum random-walk search algorithm
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(6): 060304.
[13] Optimized quantum random-walk search algorithm for multi-solution search
Zhang Yu-Chao (张宇超), Bao Wan-Su (鲍皖苏), Wang Xiang (汪翔), Fu Xiang-Qun (付向群). Chin. Phys. B, 2015, 24(11): 110309.
[14] Sub-diffusive scaling with power-law trapping times
Luo Liang (罗亮), Tang Lei-Han (汤雷翰). Chin. Phys. B, 2014, 23(7): 070514.
[15] Averaging in SU(2) open quantum random walk
Clement Ampadu. Chin. Phys. B, 2014, 23(3): 030302.
No Suggested Reading articles found!