INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Multiple-predators-based capture process on complex networks |
Rajput Ramiz Sharafat1, Cunlai Pu(濮存来)1,2, Jie Li(李杰)1, Rongbin Chen(陈荣斌)1, Zhongqi Xu(许忠奇)1 |
1 Department of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; 2 Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA |
|
|
Abstract The predator/prey (capture) problem is a prototype of many network-related applications. We study the capture process on complex networks by considering multiple predators from multiple sources. In our model, some lions start from multiple sources simultaneously to capture the lamb by biased random walks, which are controlled with a free parameter α. We derive the distribution of the lamb's lifetime and the expected lifetime <T>. Through simulation, we find that the expected lifetime drops substantially with the increasing number of lions. Moreover, we study how the underlying topological structure affects the capture process, and obtain that locating on small-degree nodes is better than on large-degree nodes to prolong the lifetime of the lamb. The dense or homogeneous network structures are against the survival of the lamb. We also discuss how to improve the capture efficiency in our model.
|
Received: 11 November 2016
Revised: 06 December 2016
Accepted manuscript online:
|
PACS:
|
89.75.Hc
|
(Networks and genealogical trees)
|
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
05.60.Cd
|
(Classical transport)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61304154), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133219120032), the Postdoctoral Science Foundation of China (Grant No. 2013M541673), and China Postdoctoral Science Special Foundation (Grant No. 2015T80556). |
Corresponding Authors:
Cunlai Pu
E-mail: pucunlai@njust.edu.cn
|
Cite this article:
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇) Multiple-predators-based capture process on complex networks 2017 Chin. Phys. B 26 038901
|
[1] |
Barabási A L 2016 Network Science (Cambridge: Cambridge University Press)
|
[2] |
Boccaletti S, Bianconi G and Criado R 2014 Phys. Rep. 544 1
|
[3] |
Mendes J F F, Dorogovtsev S N and Goltsev A V 2014 Summer Solstice 2014 27
|
[4] |
Barrat A, Barthelemy M and Vespignani A 2008 Dynamical Processes on Complex Networks (Cambridge: Cambridge University Press)
|
[5] |
Granell C, Gómez S and Arenas A 2013 Phys. Rev. Lett. 111 128701
|
[6] |
Caldarelli G and Vespignani A 2007 Large Scale Structure and Dynamics of Complex Networks (Sigapore: World Scientific)
|
[7] |
Watts D J and Strogatz S H 1998 Nature 393 440
|
[8] |
Muldoon S F, Bridgeford E W and Bassett D S 2006 Sci. Rep. 6 22057
|
[9] |
Barabási A L 2009 Science 325 412
|
[10] |
Timár G, Dorogovtsev S N and Mendes J F F 2016 Phys. Rev. E 94 022302
|
[11] |
Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
|
[12] |
Yan G, Zhou T and Hu B 2006 Phys. Rev. E 73 046108
|
[13] |
Wang W X, Wang B H, Yin C Y 2006 Phys. Rev. E 73 026111
|
[14] |
Solé-Ribalta A, Gómez S and Arenas A 2016 Phys. Rev. Lett. 116 108701
|
[15] |
Du W B, Zhou X L and Jusup M 2016 Sci. Rep. 6 19059
|
[16] |
Pu C, Li S and Yang X 2016 Physica A 447 261
|
[17] |
Pastor-Satorras R, Castellano C and Van Mieghem P 2015 Rev. Mod. Phys. 87 925
|
[18] |
Shen Z, Cao S and Wang W X 2016 Phys. Rev. E 93 032301
|
[19] |
Pu C, Li S and Yang X X 2016 Physica A 446 129
|
[20] |
Pu C, Li S and Yang J 2015 Physica A 432 230
|
[21] |
Yang H X, Tang M and Lai Y C 2015 Phys. Rev. E 91 062817
|
[22] |
Min B, Do Yi S and Lee K M 2014 Phys. Rev. E 89 042811
|
[23] |
Pocock M J O, Evans D M and Memmott J 2012 Science 335 973
|
[24] |
Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
|
[25] |
Holme P, Kim B J and Yoon C N 2002 Phys. Rev. E 65 056109
|
[26] |
Pu C, Li S and Michaelson A 2015 Phys. Lett. A 379 1633
|
[27] |
Pu C L and Cui W 2015 Physica A 419 622
|
[28] |
Kovács I A and Barabási A L 2015 Nature 524 38
|
[29] |
Dörfler F and Bullo F 2014 Automatica 50 1539
|
[30] |
Lu J and Chen G 2005 IEEE Transactions on Automatic Control 50 841
|
[31] |
Liu Y Y, Slotine J J and Barabái A L 2011 Nature 473 167
|
[32] |
Ruths J and Ruths D 2014 Science 343 1373
|
[33] |
Wang X F and Chen G 2002 Physica A 310 521
|
[34] |
Yan G, Tsekenis G and Barzel B 2015 Nat. Phys. 11 779
|
[35] |
Yuan Z, Zhao C and Di Z 2013 Nat. Commu. 4 2447
|
[36] |
Pu C L, Pei W J and Michaelson A 2012 Physica A 391 4420
|
[37] |
Lü L and Zhou T 2011 Physica A 390 1150
|
[38] |
Cui W, Pu C and Xu Z 2016 Physica A 457 202
|
[39] |
Xu Z, Pu C and Yang J 2016 Physica A 456 294
|
[40] |
Albert R, Jeong H and Barabási A L 2000 Nature 406 378
|
[41] |
Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
|
[42] |
Zhao M, Zhou T, Wang B H, Yan G, Yang H J and Bai W J 2006 Physica A 371 773
|
[43] |
Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
|
[44] |
Klafter J and Sokolov I M 2011 First Steps in Random Walks: From Tools to Applications (Oxford: Oxford University Press)
|
[45] |
White R T 2015 Random Walks on Random Lattices and Their Applications (Florida Institute of Technology)
|
[46] |
Lovász L 1993 Combinatorics, Paul erdos is eighty 2 1
|
[47] |
Burioni R and Cassi D 2005 J. Phys. A 38 R45
|
[48] |
Yoon S, Lee S and Yook S H 2007 Phys. Rev. E 75 046114
|
[49] |
Newman M E J 2005 Soc. Networks 27 39
|
[50] |
Rosvall M and Bergstrom C T 2008 Proc. Natl. Acad. Sci. 105 1118
|
[51] |
Zhou H and Distance 2003 Phys. Rev. E 67 061901
|
[52] |
Backstrom L and Leskovec J 2011 Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. ACM 2011 635
|
[53] |
Millán V M L, Cholvi V and Anta A F 2016 Comp. Net. 103 165
|
[54] |
Aalsalem M Y, Khan W Z and Saad N M 2016 PlOS One 11 e0158072
|
[55] |
Fronczak A and Fronczak P 2009 Phys. Rev. E 80 016107
|
[56] |
Viswanathan G M, Buldyrev S V and Havlin S 1999 Nature 401 911
|
[57] |
Huang B, Feng Y and Li X 2015 International Conference on Information and Communications Technologies (ICT 2015) IET 2015 1
|
[58] |
Berryman A A 1992 Ecology 73 1530
|
[59] |
Zumofen G and Blumen A 1982 J. Chem. Phys. 76 3713
|
[60] |
Barnes C, Maxwell D and Reuman D C 2010 Ecology 91 222
|
[61] |
Lee S, Yook S H and Kim Y 2006 Phys. Rev. E 74 046118
|
[62] |
Wang S P and Pei W J 2008 Physica A 387 4699
|
[63] |
Derek de Solla Price 1976 J. Am. Soc. Inf. Sci. 27 292
|
[64] |
Ou Q, Jin Y D, Zhou T, Wang B H and Yin B Q 2007 Phys. Rev. E 75 021102
|
[65] |
Yan G, Zhou T, Wang J, Fu Z Q and Wang B H 2005 Chin. Phys. Lett. 22 510
|
[66] |
Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
|
[67] |
Noh J D and Rieger H 2004 Phys. Rev. Lett. 92 118701
|
[68] |
Yang S J 2005 Phys. Rev. E 71 016107
|
[69] |
Leskovec J, Kleinberg J and Faloutsos C 2007 ACM Trans. Knowl. Discov. Data (TKDD) 1 2
|
[70] |
Köhler S, Bauer S, Horn D and Robinson P N 2008 Am. J. Hum. Genet. 82 949
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|