Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098902    DOI: 10.1088/1674-1056/21/9/098902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of node buffer and capacity on network traffic

Ling Xiang (凌翔)a, Hu Mao-Bin (胡茂彬)b, Ding Jian-Xun (丁建勋)a
a School of Transportation Engineering, Hefei University of Technology, Hefei 230009, China;
b School of Engineering Science, University of Science and Technology of China, Hefei 230026, China
Abstract  In this paper, we study the optimization of network traffic by considering the effects of the node's buffer ability and capacity. Two node buffer settings are considered. The node capacity is considered to be proportional to its buffer ability. The node effects on network traffic systems are studied with the shortest path protocol and an extension of the optimal routing [Phys. Rev. E 74 046106 (2006)]. In the diagrams of flux-density relation, it is shown that the node's buffer ability and capacity have profound effects on the network traffic.
Keywords:  scale-free network      small-world network      routing strategy      flux-density relation  
Received:  07 December 2011      Revised:  05 June 2012      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71171185, 71001001, and 71071044), the Doctoral Program of the Ministry of Education, China (Grant No. 20110111120023), and the PhD Program Foundation of Hefei University of Technology, China (Grant No. 2011HGBZ1302).
Corresponding Authors:  Ding Jian-Xun     E-mail:  dingjianxun@hfut.edu.cn

Cite this article: 

Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋) Effects of node buffer and capacity on network traffic 2012 Chin. Phys. B 21 098902

[1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[2] Newman M E J 2001 Phys. Rev. E 64 016132
[3] Boccaletti S, Latora V and Moreno Y 2006 Phys. Rep. 424 175
[4] Watts D J and Strogaz S H 1998 Nature 393 440
[5] Barabási A L and Albert R 1999 Science 286 509
[6] Zhang J, Cao X B, Du W B and Cai K Q 2010 Physica A 389 3922
[7] Wang Y Q and Jiang G P 2010 Acta Phys. Sin. 59 6725 (in Chinese)
[8] Song Y R and Jiang G P 2010 Acta Phys. Sin. 59 7546 (in Chinese)
[9] Arenas A, Diaz-Guilera A D and Guimerá R 2001 Phys. Rev. Lett. 86 3196
[10] Ohira T and Sawatari R 1998 Phys. Rev. E 58 193
[11] Martino D D, DallAsta L, Bianconi G and Marsili M 2009 Phys. Rev. E 79 015101(R)
[12] Menezes M A and Barabási A L 2004 Phys. Rev. Lett. 92 028701
[13] Meloni S, Gómez-Gardenes J, Latora V and Moreno Y 2008 Phys. Rev. Lett. 100 208701
[14] Yan G, Zhou T, Hu B, Fu Z Q and Wang B H 2006 Phys. Rev. E 73 046108
[15] Danila B, Yu Y, Marsh J A and Bassler K E 2006 Phys. Rev. E 74 046106
[16] Ling X, Hu M B, Jiang R and Wu Q S 2010 Phys. Rev. E 81 016113
[17] Shen Y, Pei W J, Wang K and Wang S P 2009 Chin. Phys. B 18 3783
[18] Liu F, Zhao H, Li M, Ren F Y and Zhu Y B 2010 Chin. Phys. B 19 040513
[19] Liu Z, Hu M B, Jiang R, Wang W X and Wu Q S 2007 Phys. Rev. E 76 037101
[20] Yang H X, Wang W X, Wu Z X and Wang B H 2008 Physica A 387 6857
[21] Gong X F, Kun L and Lai C H 2008 Europhys. Lett. 83 28001
[22] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[23] Erdös P and Rényi A 1959 Publ. Math. Debrecen 6 290
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Finite density scaling laws of condensation phase transition in zero-range processes on scale-free networks
Guifeng Su(苏桂锋), Xiaowen Li(李晓温), Xiaobing Zhang(张小兵), Yi Zhang(张一). Chin. Phys. B, 2020, 29(8): 088904.
[3] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[4] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[5] Study on the phase transition of the fractal scale-free networks
Qing-Kuan Meng(孟庆宽), Dong-Tai Feng(冯东太), Yu-Ping Sun(孙玉萍), Ai-Ping Zhou(周爱萍), Yan Sun(孙艳), Shu-Gang Tan(谭树刚), Xu-Tuan Gao(高绪团). Chin. Phys. B, 2018, 27(10): 106402.
[6] Multiple-predators-based capture process on complex networks
Rajput Ramiz Sharafat, Cunlai Pu(濮存来), Jie Li(李杰), Rongbin Chen(陈荣斌), Zhongqi Xu(许忠奇). Chin. Phys. B, 2017, 26(3): 038901.
[7] Scaling of weighted spectral distribution in weighted small-world networks
Bo Jiao(焦波), Xiao-Qun Wu(吴晓群). Chin. Phys. B, 2017, 26(2): 028901.
[8] Optimized routing strategy for complex network with multiple priorities
Shi-Bao Li(李世宝), Zong-Xing Sun(孙宗星), Jian-Hang Liu(刘建航), Hai-Hua Chen(陈海华). Chin. Phys. B, 2016, 25(8): 088902.
[9] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[10] Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network
Xie Wei-Hao (解维浩), Zhou Bin (周斌), Liu En-Xiao (刘恩晓), Lu Wei-Dang (卢为党), Zhou Ting (周婷). Chin. Phys. B, 2015, 24(9): 098903.
[11] Effects of channel noise on synchronization transitions in delayed scale-free network of stochastic Hodgkin-Huxley neurons
Wang Bao-Ying (王宝英), Gong Yu-Bing (龚玉兵). Chin. Phys. B, 2015, 24(11): 118702.
[12] Improved routing strategy based on gravitational field theory
Song Hai-Quan (宋海权), Guo Jin (郭进). Chin. Phys. B, 2015, 24(10): 108901.
[13] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[14] Co-evolution of the brand effect and competitiveness in evolving networks
Guo Jin-Li (郭进利). Chin. Phys. B, 2014, 23(7): 070206.
[15] Optimal network structure to induce the maximal small-world effect
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(2): 028902.
No Suggested Reading articles found!