Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084202    DOI: 10.1088/1674-1056/ac5e99
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Orthogonal-triangular decomposition ghost imaging

Jin-Fen Liu(刘进芬)1,2, Le Wang(王乐)1, and Sheng-Mei Zhao(赵生妹)1,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Nanjing Tech University Pujiang Institute, Nanjing 211222, China;
3 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing 210003, China
Abstract  Ghost imaging (GI) offers great potential with respect to conventional imaging techniques. However, there are still some obstacles for reconstructing images with high quality, especially in the case that the orthogonal measurement matrix is impossible to construct. In this paper, we propose a new scheme based on the orthogonal-triangular (QR) decomposition, named QR decomposition ghost imaging (QRGI) to reconstruct a better image with good quality. In the scheme, we can change the randomly non-orthogonal measurement matrix into orthonormal matrix by performing QR decomposition in two cases. (1) When the random measurement matrix is square, it can be firstly decomposed into an orthogonal matrix $\bm Q$ and an upper triangular matrix $\bm R$. Then let the off-diagonal values of $\bm R$ equal to 0.0, the diagonal elements of $\bm R$ equal to a constant $k$, where $k$ is the average of all values of the main diagonal, so the resulting measurement matrix can be obtained. (2) When the random measurement matrix is with full rank, we firstly compute its transpose, and followed with above QR operation. Finally, the image of the object can be reconstructed by correlating the new measurement matrix and corresponding bucket values. Both experimental and simulation results verify the feasibility of the proposed QRGI scheme. Moreover, the results also show that the proposed QRGI scheme could improve the imaging quality comparing to traditional GI (TGI) and differential GI (DGI). Besides, in comparison with the singular value decomposition ghost imaging (SVDGI), the imaging quality and the reconstruction time by using QRGI are similar to those by using SVDGI, while the computing time (the time consuming on the light patterns computation) is substantially shortened.
Keywords:  orthogonal-triangular (QR) decomposition      ghost imaging      correlated imaging  
Received:  25 November 2021      Revised:  11 March 2022      Accepted manuscript online:  17 March 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX20 0729), Natural Science Research Project of Higher Education of Jiangsu Province, China (Grant No. 20KJB510030), and Research project of NanJing Tech University Pujiang Institute (Grant No. njpj2020-1-02).
Corresponding Authors:  Sheng-Mei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹) Orthogonal-triangular decomposition ghost imaging 2022 Chin. Phys. B 31 084202

[1] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52R3429(R)
[2] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[3] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183602
[4] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[5] Zhang D, Zhai Y H, Wu L A and Chen X H 2005 Opt. Lett. 30 2354
[6] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[7] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[8] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J and Wu L A 2014 Opt. Lett. 39 2314
[9] Zhang X, Yin H, Li R, Hong J, Ai S, Zhang W, Wang C, Hsieh J, Li Q and Xue P 2020 Opt. Exp. 28 17232
[10] Zhang Y D and Zhao S M 2016 Chin. Phys. B 26 054205
[11] Zhao S, Wang L, Liang W, Cheng W and Gong L 2015 Opt. Commun. 353 90
[12] Yin M Q, Wang L and Zhao S M 2019 Chin. Phys. B 28 094201
[13] Yin X L, Xia Y J and Duan D Y 2018 Opt. Exp. 26 18944
[14] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett. 32 114208
[15] Li H X, Bai Y F, Shi X H, Nan S Q, Qu L J, Shen Q and Fu X Q 2017 Chin. Phys. B 26 104204
[16] Chen L, Yan D, Song L J and Zhang T 2019 Chin. Phys. Lett. 36 030302
[17] Chen W and Chen X 2015 Opt. Lasers. Eng. 73 123
[18] Zhang H and Duan D 2021 Chin. Opt. Lett. 19 101101
[19] Zhou Y, Guo S X, Zhong F and Zhang T 2019 Chin. Phys. B 28 084204
[20] Si Y, Kong L J, Li Y N, Tu C H and Wang H T 2016 Chin. Phys. Lett. 33 034203
[21] Shapiro J H 2008 Phys. Rev. A 78 061802(R)
[22] Wang L and Zhao S 2016 Photon. Res. 4 240
[23] Liu J, Wang L and Zhao S 2021 Opt. Exp. 29 41485
[24] Wang L and Zhao S 2020 IEEE. Photon. J. 12 6901113
[25] Sun M J, Meng L T, Edgar M P, Padgett M J and Radwell N 2017 Sci. Rep. 7 3464
[26] Zhang Z, Wang X, Zheng G and Zhong J 2017 Opt. Exp. 25 19619
[27] Zhang C, Gong W and Han S 2013 Appl. Phys. Lett. 102 021111
[28] Liu B L, Yang Z H, Liu X and Wu L A 2017 J. Mod. Opt. 64 259
[29] Yu W K, Yao X R, Liu X F, Lan R M, Wu L A, Zhai G J and Zhao Q 2016 Opt. Commun. 371 105
[30] Zhou C, Huang H Y, Liu B and Song L J 2016 Acta Opt. Sin. 36 0911001
[31] Xiao Y, Zhou L N and Chen W 2019 IEEE Photon. J. 11 7800411
[32] Zhang C, Guo S X, Cao J S, Guan J and Gao F L 2014 Opt. Exp. 22 30063
[33] Zhang X, Meng X, Yang X, Wang Y, Yin Y, Li X, Peng X, He W, Dong G and Chen H 2018 Opt. Exp. 26 12948
[34] Luo B, Yin P Q, Yin L F, Wu G H and Guo H 2018 Opt. Exp. 26 23093
[35] Gander W 1980 Algorithms for the QR-Decomposition (Research Report 80-02 Angewandte Mathematik ETH) pp. 1-27
[36] Francis J G F 1961 Comput. J. 4 265
[37] Sharma A, Paliwal K K, Imoto S and Miyano S 2013 Int. J. Mach. Learn. and Cyber. 4 679
[38] Parlett B N 2000 Comput. Sci. Eng. 2 38
[39] Wang L and Zhao S 2020 Chin. Phys. B 29 024204
[40] Wang L and Zhao S 2021 Opt. Exp. 29 24486
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[6] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[7] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[8] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[9] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[10] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[11] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[12] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[13] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[14] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
[15] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
No Suggested Reading articles found!