ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating |
Jing-Jing Yang(杨晶晶), Jie Fan(范杰)†, Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉)‡ |
State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun 130022, China |
|
|
Abstract A 1040 nm tapered laser with tapered distributed Bragg reflector (DBR) grating is designed and fabricated. By designing the grating with tapered layout, the tapered DBR grating exhibits the scattering effect on side backward-traveling waves, thus achieving additional suppression of parasitic oscillation. Under the suppression of parasitic oscillation, the spatial and spectral characteristics of the tapered laser are improved. The experimental results show that a near-Gaussian far-field distribution and a kink-free P-I characteristics are achieved, and a single peak emission with a wavelength of 1046.84 nm and a linewidth of 56 pm is obtained.
|
Received: 14 October 2021
Revised: 15 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
Fund: Project supported by Jilin Science and Technology Development Plan, China (Grant Nos. 20210201030GX and 20190302052GX). |
Corresponding Authors:
Jie Fan, Xiao-Hui Ma
E-mail: fanjie@cust.edu.cn;mxh@cust.edu.cn
|
Cite this article:
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉) Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating 2022 Chin. Phys. B 31 084203
|
[1] Chan H Y, Alam S, Xu L, Bateman J, Richardson D J and Shepherd D P 2014 Opt. Express 22 21938 [2] Park J H, Jedrzejczyk D, Feise D, Maaßdorf A, Paschke K, Kang T Y, Ha J H, Oh G Y, Jeon H N, Yim B and Lee H Y 2014 IEEE Photonics Technol. Lett. 26 1936 [3] Hasler K H, Sumpf B, Adamiec P, Bugge F, Fricke J, Ressel P, Wenzel H, Erbert G and Trankle G 2008 IEEE Photonics Technol. Lett. 20 1648 [4] Fiebig C, Blume G, Uebernickel M, Feise D, Kaspari C, Paschke K, Fricke J, Wenzel H and Erbert G 2009 IEEE J. Sel. Top. Quantum Electron. 15 978 [5] Müller A, Fricke J, Bugge F, Brox O, Erbert G and Sumpf B 2016 Appl. Phys. B 122 87 [6] Spreemann M, Lichtner M, Radziunas M, Bandelow U and Wenzel H 2009 IEEE J. Quantum Electron. 45 609 [7] Jedrzejczyk D, Brox O, Bugge F, Fricke J, Ginolas A, Paschke K, Wenzel H and Erbert G 2010 Proc. SPIE 7583 758317 [8] Lei Y X, Chen Y Y, Gao F, Ma D Z, Jia P, Cheng Q, Wu H, Ruan C K, Liang L, Chen C, Zhang J, Tian J Y, Qin L, Ning Y Q and Wang L J 2019 IEEE Photonics J. 11 1500609 [9] Odriozola H, Tijero J M G, Borruel L, Esquivias I, Wenzel H, Dittmar F, Paschke K, Sumpf B and Erbert G 2009 IEEE J. Quantum Electron. 45 42 [10] Lim J J, Bull S, Kaunga-Nyirenda S, Sujecki S, Larkins E C, Hasler K H and Fricke J 2012 IEEE Photonics Society Summer Topical Meeting Series, Seattle, WA, USA, July 9-11, 2012, pp. 35-36 [11] Kaunga-Nyirenda S N, Bull S, Lim J J, Hasler K H, Fricke J and Larkins E C 2014 IET Optoelectron. 8 99 [12] Helal M A, Nyirenda-Kaunga S N, Bull S and Larkins E C 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), Coventry·United Kingdom, October 11-12, 2017, pp. 25-26 [13] Sujecki S, Borruel L, Wykes J, Moreno P, Sumpf B, Sewell P, Wenzel H, Benson T M, Erbert G, Esquivias I and Larkins E C 2003 IEEE J. Sel. Top. Quantum Electron. 9 823 [14] Borruel L, Odriozola H, Tijero J M G, Esquivias I, Sujecki S and Larkins E C 2008 Opt. Quantum Electron. 40 175 [15] Hou L, Haji M, Akbar J and Marsh J H 2012 Opt. Lett. 37 452 [16] Faugeron M, Vilera M, Krakowski M, Robert Y, Vinet E, Primiani P, Goëc J P L, Parillaud O, Pérez-Serrano A, Tijero J M G, Kochem G, TraubM, Esquivias I and van Dijk F 2015 IEEE Photonics Technol. Lett. 27 1449 [17] Zink C, Maaßdorf A, Fricke J, Ressel P, Sumpf B, Erbert G and Tränkle G 2020 IEEE Photonics Technol. Lett. 32 59 [18] Müller A, Zink C, Fricke J, Bugge F, Erbert G, Sumpf B and Tränkle G 2017 IEEE J. Sel. Top. Quantum Electron. 23 1501107 [19] Crump P, Brox O, Bugge F, Fricke J, Schultz C, Spreemann M, Sumpf B, Wenzel H and Erbert G 2012 Semicond. Semimetals 86 49 [20] Müller A, Fricke J, Brox O, Erbert G and Sumpf B 2016 Semicond. Sci. Technol. 31 125011 [21] Bossert D J, Marciante J R and Wright M W 1995 IEEE Photonics Technol. Lett. 7 470 [22] Adamiec P, Bonilla B, Consoli A, Tijero J M G, Aguilera S and Esquivias I 2012 Appl. Opt. 51 7160 [23] Spreemann M, Lichtner M, Radziunas M, Bandelow U and Wenzel H 2009 IEEE J. Quantum Electron. 45 609 [24] Egan A, Ning C Z, Moloney J V, Indik R A, Wright M W, Bossert D J and McInerney J G 1998 IEEE J. Quantum Electron. 34 166 [25] Kaspari C, Blume G, Feise D, Paschke K, Erbert G and Weyers M 2011 IET Optoelectron. 5 121 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|