Special Issue:
TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
|
TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids |
Prev
Next
|
|
|
Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres |
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平)† |
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Since the discovery of transition metal dichalcogenide (TMDC) nanoparticles (NPs) with the onion-like structure, many efforts have been made to develop their fabrication methods. Laser fabrication (LF) is one of the most promising methods to prepare onion-structured TMDC (or OS-TMDC) NPs due to its green, flexible, and scalable syntheses. In this mini-review article, we systematically introduce various laser-induced OS-TMDC (especially the OS-MoS2) NPs, their formation mechanism, properties, and applications. The preparation routes mainly include laser ablation in liquids and atmospheres, and laser irradiation in liquids. The various formation mechanisms are then introduced based on the different preparation routes, to describe the formations of the corresponding OS-NPs. Finally, some interesting properties and novel applications of these NPs are briefly demonstrated, and a short outlook is also given. This review could help to understand the progress of the laser-induced OS-TMDC NPs and their applications.
|
Received: 30 November 2021
Revised: 28 December 2021
Accepted manuscript online: 10 February 2022
|
PACS:
|
61.46.Df
|
(Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))
|
|
61.48.-c
|
(Structure of fullerenes and related hollow and planar molecular structures)
|
|
52.38.Mf
|
(Laser ablation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207101) and the National Natural Science Foundation of China (Grant Nos. 11974352 and 51771182). |
Corresponding Authors:
Weiping Cai
E-mail: wpcai@issp.ac.cn
|
Cite this article:
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平) Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres 2022 Chin. Phys. B 31 076106
|
[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [3] Liu W J, Liu M L, Wang X T, Shen T, Chang G Q, Lei M, Deng H X, Wei Z M and Wei Z Y 2019 ACS Appl. Nano Mater. 2 2697 [4] Mattinen M, Leskela M and Ritala M 2021 Adv. Mater. Interfaces 8 2001677 [5] Meng Z, Stolz R M, Mendecki L and Mirica K A 2019 Chem. Rev. 119 478 [6] Zhou X, Sun H and Bai X 2020 Front. Bioeng. Biotechnol. 8 236 [7] Bai J, Zhao B, Wang X, Ma H, Li K, Fang Z, Li H, Dai J, Zhu X and Sun Y 2020 J. Power Sources 465 228282 [8] Zhou L, Zhang H, Bao H, Wei Y, Fu H and Cai W 2020 ACS Appl. Nano Mater. 3 624 [9] Chen M, Lin Z, Xuan M, Lin X, Yang M, Dai L and He Q 2021 Angew. Chem. Int. Ed. 60 16674 [10] Parilla P A, Dillon A C, Parkinson B A, Jones K M, Alleman J, Riker G, Ginley D S and Heben M J 2004 J. Phys. Chem. B 108 6197 [11] Feldman Y, Zak A, Popovitz-Biro R and Tenne R 2000 Solid State Sci. 2 663 [12] Rapoport L, Fleischer N and Tenne R 2005 J. Mater. Chem. 15 1782 [13] Tenne R, Margulis L, Genut M and Hodes G 1992 Nature 360 444 [14] Margulis L, Salitra G, Tenne R and Talianker M 1993 Nature 365 113 [15] Rosentsveig R, Margolin A, Gorodnev A, Popovitz-Biro R, Feldman Y, Rapoport L, Novema Y, Naveh G and Tenne R 2009 J. Mater. Chem. 19 4368 [16] Tenne R 2006 J. Mater. Res. 21 2726 [17] Yadgarov L, Choi C L, Sedova A, Cohen A, Rosentsveig R, Bar-Elli O, Oron D, Dai H J and Tenne R 2014 ACS Nano 8 3575 [18] Nath M, Govindaraj A and Rao C N R 2001 Adv. Mater. 13 283 [19] Chen J, Li S L, Gao F and Tao Z L 2003 Chem. Mater. 15 1012 [20] Li X L, Ge J P and Li Y D 2004 Chem. Eur. J. 10 6163 [21] Etzkorn J, Therese H A, Rocker F, Zink N, Kolb U and Tremel W 2005 Adv. Mater. 17 2372 [22] Parilla P A, Dillon A C, Jones K M, Riker G, Schulz D L, Ginley D S and Heben M J 1999 Nature 397 114 [23] Sen R, Govindaraj A, Suenaga K, Suzuki S, Kataura H, Iijima S and Achiba Y 2001 Chem. Phys. Lett. 340 242 [24] Wu H H, Yang R, Song B M, Han Q S, Li J Y, Zhang Y, Fang Y, Tenne R and Wang C 2011 ACS Nano 5 1276 [25] Compagnini G, Sinatra M G, Messina G C, Patane G, Scalese S and Puglisi O 2012 Appl. Surf. Sci. 258 5672 [26] Zhou L, Zhang H, Bao H, Liu G, Li Y and Cai W 2017 J. Phys. Chem. C 121 23233 [27] Chen T, Zou H, Wu X, Chen Y, Bo S, Zheng L and Yang G 2019 ACS Biomater. Sci. Eng. 5 3079 [28] Hsu W K, Chang B H, Zhu Y Q, Han W Q, Terrones H, Terrones M, Grobert N, Cheetham A K, Kroto H W and Walton D R M 2000 J. Am. Chem. Soc. 122 10155 [29] Vollath D and Szabo D V 2000 Acta Mater. 48 953 [30] Zhang D S, Goekce B and Barcikowski S 2017 Chem. Rev. 117 3990 [31] Liu Le, Xu L, Zhang H and Chen M 2017 Chin. Phys. B 26 085206 [32] Ali N, Bashir S, Umm-i-Kalsoom, Rafique M S, Begum N, Husinsky W, Ajami A and Natahala C S R 2017 Chin. Phys. B 26 015204 [33] Zhou L, Zhang H, Bao H, Liu G, Li Y and Cai W 2018 J. Phys. Chem. C 122 8628 [34] Liu H, Su D, Zhou R, Sun B, Wang G and Qiao S Z 2012 Adv. Energy Mater. 2 970 [35] Zeng H B, Du X W, Singh S C, Kulinich S A, Yang S K, He J P and Cai W P 2012 Adv. Funct. Mater. 22 1333 [36] Hashida M, Mishima H, Tokita S and Sakabe S 2009 Opt. Express 17 13116 [37] Bar-Sadan M, Enyashin A N, Gemming S, Popovitz-Biro R, Hong S Y, Prior Y, Tenne R and Seifert G 2006 J. Phys. Chem. B 110 25399 [38] Savva K, Visic B, Popovitz-Biro R, Stratakis E and Tenne R 2017 ACS Omega 2 2649 [39] Song S-T, Cui L, Yang J and Du X-W 2015 ACS Appl. Mater. Interfaces 7 1949 [40] Liang C, Sasaki T, Shimizu Y and Koshizaki N 2004 Chem. Phys. Lett. 389 58 [41] Ou G, Fan P X, Ke X X, Xu Y S, Huang K, Wei H H, Yu W, Zhang H J, Zhong M L, Wu H and Li Y D 2018 Nano Res. 11 751 [42] Sunitha A P, Hajara P, Shaji M, Jayaraj M K and Saji K J 2018 J. Lumin. 203 313 [43] Han Q, Cai S, Yang L, Wang X, Qi C, Yang R and Wang C 2017 ACS Appl. Mater. Interfaces 9 21116 [44] Moniri S and Hantehzadeh M R 2021 Opt. Quantum Electron. 53 215 [45] Song X, Qiu Z, Yang X, Gong H, Zheng S, Cao B, Wang H, Möhwald H and Shchukin D 2014 Chem. Mater. 26 5113 [46] Luo T, Chen X, Li P, Wang P, Li C, Cao B, Luo J and Yang S 2018 Nanotechnology 29 265704 [47] Luo T, Chen X, Wang P, Li C, Cao B and Zeng H 2018 Adv. Mater. Interfaces 5 1700839 [48] Luo T, Wang P, Qiu Z, Yang S, Zeng H and Cao B 2016 Chem. Commun. 52 10147 [49] Alexaki K, Kostopoulou A, Sygletou M, Kenanakis G and Stratakis E 2018 ACS Omega 3 16728 [50] Oztas T, Sen H S, Durgun E and Ortac B 2014 J. Phys. Chem. C 118 30120 [51] Baldovi H G, Latorre-Sanchez M, Esteve-Adell I, Khan A, Asiri A M, Kosa S A and Garcia H 2016 J. Nanopart. Res. 18 240 [52] Wu X, Tian X, Chen T, Zeng A and Yang G 2018 Nanotechnology 29 295604 [53] Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, Joly-Pottuz L, Martin J M, Popovitz-Biro R and Tenne R 2005 Small 1 1100 [54] Hu J J, Zabinski J S, Bultman J E, Sanders J H and Voevodin A A 2008 Cryst. Growth Des. 8 2603 [55] Zak A, Feldman Y, Alperovich V, Rosentsveig R and Tenne R 2000 J. Am. Chem. Soc. 122 11108 [56] Weber T, Muijsers J C, vanWolput H, Verhagen C P J and Niemantsverdriet J W 1996 J. Phys. Chem. 100 14144 [57] Seo J W, Jun Y W, Park S W, Nah H, Moon T, Park B, Kim J G, Kim Y J and Cheon J 2007 Angew. Chem. Int. Ed. 46 8828 [58] Sharifi T, Gracia-Espino E, Barzegar H R, Jia X E, Nitze F, Hu G Z, Nordblad P, Tai C W and Wagberg T 2013 Nat. Commun. 4 2319 [59] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S and Shen Z 2014 Small 10 1090 [60] Xu Y Y, Yang C, Jiang S Z, Man B Y, Liu M, Chen C S, Zhang C, Sun Z C, Qiu H W and Li H S 2015 Appl. Surf. Sci. 357 1708 [61] Xu H, Xie L M, Zhang H L and Zhang J 2011 ACS Nano 5 5338 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|