Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 076106    DOI: 10.1088/1674-1056/ac539c
Special Issue: TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids
TOPICAL REVIEW—Laser and plasma assisted synthesis of advanced nanomaterials in liquids Prev   Next  

Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres

Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平)
Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Since the discovery of transition metal dichalcogenide (TMDC) nanoparticles (NPs) with the onion-like structure, many efforts have been made to develop their fabrication methods. Laser fabrication (LF) is one of the most promising methods to prepare onion-structured TMDC (or OS-TMDC) NPs due to its green, flexible, and scalable syntheses. In this mini-review article, we systematically introduce various laser-induced OS-TMDC (especially the OS-MoS2) NPs, their formation mechanism, properties, and applications. The preparation routes mainly include laser ablation in liquids and atmospheres, and laser irradiation in liquids. The various formation mechanisms are then introduced based on the different preparation routes, to describe the formations of the corresponding OS-NPs. Finally, some interesting properties and novel applications of these NPs are briefly demonstrated, and a short outlook is also given. This review could help to understand the progress of the laser-induced OS-TMDC NPs and their applications.
Keywords:  transition metal dichalcogenide nanoparticles      onion-like structure      laser fabrication in liquids      formation mechanism  
Received:  30 November 2021      Revised:  28 December 2021      Accepted manuscript online:  10 February 2022
PACS:  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  52.38.Mf (Laser ablation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0207101) and the National Natural Science Foundation of China (Grant Nos. 11974352 and 51771182).
Corresponding Authors:  Weiping Cai     E-mail:  wpcai@issp.ac.cn

Cite this article: 

Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平) Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres 2022 Chin. Phys. B 31 076106

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[3] Liu W J, Liu M L, Wang X T, Shen T, Chang G Q, Lei M, Deng H X, Wei Z M and Wei Z Y 2019 ACS Appl. Nano Mater. 2 2697
[4] Mattinen M, Leskela M and Ritala M 2021 Adv. Mater. Interfaces 8 2001677
[5] Meng Z, Stolz R M, Mendecki L and Mirica K A 2019 Chem. Rev. 119 478
[6] Zhou X, Sun H and Bai X 2020 Front. Bioeng. Biotechnol. 8 236
[7] Bai J, Zhao B, Wang X, Ma H, Li K, Fang Z, Li H, Dai J, Zhu X and Sun Y 2020 J. Power Sources 465 228282
[8] Zhou L, Zhang H, Bao H, Wei Y, Fu H and Cai W 2020 ACS Appl. Nano Mater. 3 624
[9] Chen M, Lin Z, Xuan M, Lin X, Yang M, Dai L and He Q 2021 Angew. Chem. Int. Ed. 60 16674
[10] Parilla P A, Dillon A C, Parkinson B A, Jones K M, Alleman J, Riker G, Ginley D S and Heben M J 2004 J. Phys. Chem. B 108 6197
[11] Feldman Y, Zak A, Popovitz-Biro R and Tenne R 2000 Solid State Sci. 2 663
[12] Rapoport L, Fleischer N and Tenne R 2005 J. Mater. Chem. 15 1782
[13] Tenne R, Margulis L, Genut M and Hodes G 1992 Nature 360 444
[14] Margulis L, Salitra G, Tenne R and Talianker M 1993 Nature 365 113
[15] Rosentsveig R, Margolin A, Gorodnev A, Popovitz-Biro R, Feldman Y, Rapoport L, Novema Y, Naveh G and Tenne R 2009 J. Mater. Chem. 19 4368
[16] Tenne R 2006 J. Mater. Res. 21 2726
[17] Yadgarov L, Choi C L, Sedova A, Cohen A, Rosentsveig R, Bar-Elli O, Oron D, Dai H J and Tenne R 2014 ACS Nano 8 3575
[18] Nath M, Govindaraj A and Rao C N R 2001 Adv. Mater. 13 283
[19] Chen J, Li S L, Gao F and Tao Z L 2003 Chem. Mater. 15 1012
[20] Li X L, Ge J P and Li Y D 2004 Chem. Eur. J. 10 6163
[21] Etzkorn J, Therese H A, Rocker F, Zink N, Kolb U and Tremel W 2005 Adv. Mater. 17 2372
[22] Parilla P A, Dillon A C, Jones K M, Riker G, Schulz D L, Ginley D S and Heben M J 1999 Nature 397 114
[23] Sen R, Govindaraj A, Suenaga K, Suzuki S, Kataura H, Iijima S and Achiba Y 2001 Chem. Phys. Lett. 340 242
[24] Wu H H, Yang R, Song B M, Han Q S, Li J Y, Zhang Y, Fang Y, Tenne R and Wang C 2011 ACS Nano 5 1276
[25] Compagnini G, Sinatra M G, Messina G C, Patane G, Scalese S and Puglisi O 2012 Appl. Surf. Sci. 258 5672
[26] Zhou L, Zhang H, Bao H, Liu G, Li Y and Cai W 2017 J. Phys. Chem. C 121 23233
[27] Chen T, Zou H, Wu X, Chen Y, Bo S, Zheng L and Yang G 2019 ACS Biomater. Sci. Eng. 5 3079
[28] Hsu W K, Chang B H, Zhu Y Q, Han W Q, Terrones H, Terrones M, Grobert N, Cheetham A K, Kroto H W and Walton D R M 2000 J. Am. Chem. Soc. 122 10155
[29] Vollath D and Szabo D V 2000 Acta Mater. 48 953
[30] Zhang D S, Goekce B and Barcikowski S 2017 Chem. Rev. 117 3990
[31] Liu Le, Xu L, Zhang H and Chen M 2017 Chin. Phys. B 26 085206
[32] Ali N, Bashir S, Umm-i-Kalsoom, Rafique M S, Begum N, Husinsky W, Ajami A and Natahala C S R 2017 Chin. Phys. B 26 015204
[33] Zhou L, Zhang H, Bao H, Liu G, Li Y and Cai W 2018 J. Phys. Chem. C 122 8628
[34] Liu H, Su D, Zhou R, Sun B, Wang G and Qiao S Z 2012 Adv. Energy Mater. 2 970
[35] Zeng H B, Du X W, Singh S C, Kulinich S A, Yang S K, He J P and Cai W P 2012 Adv. Funct. Mater. 22 1333
[36] Hashida M, Mishima H, Tokita S and Sakabe S 2009 Opt. Express 17 13116
[37] Bar-Sadan M, Enyashin A N, Gemming S, Popovitz-Biro R, Hong S Y, Prior Y, Tenne R and Seifert G 2006 J. Phys. Chem. B 110 25399
[38] Savva K, Visic B, Popovitz-Biro R, Stratakis E and Tenne R 2017 ACS Omega 2 2649
[39] Song S-T, Cui L, Yang J and Du X-W 2015 ACS Appl. Mater. Interfaces 7 1949
[40] Liang C, Sasaki T, Shimizu Y and Koshizaki N 2004 Chem. Phys. Lett. 389 58
[41] Ou G, Fan P X, Ke X X, Xu Y S, Huang K, Wei H H, Yu W, Zhang H J, Zhong M L, Wu H and Li Y D 2018 Nano Res. 11 751
[42] Sunitha A P, Hajara P, Shaji M, Jayaraj M K and Saji K J 2018 J. Lumin. 203 313
[43] Han Q, Cai S, Yang L, Wang X, Qi C, Yang R and Wang C 2017 ACS Appl. Mater. Interfaces 9 21116
[44] Moniri S and Hantehzadeh M R 2021 Opt. Quantum Electron. 53 215
[45] Song X, Qiu Z, Yang X, Gong H, Zheng S, Cao B, Wang H, Möhwald H and Shchukin D 2014 Chem. Mater. 26 5113
[46] Luo T, Chen X, Li P, Wang P, Li C, Cao B, Luo J and Yang S 2018 Nanotechnology 29 265704
[47] Luo T, Chen X, Wang P, Li C, Cao B and Zeng H 2018 Adv. Mater. Interfaces 5 1700839
[48] Luo T, Wang P, Qiu Z, Yang S, Zeng H and Cao B 2016 Chem. Commun. 52 10147
[49] Alexaki K, Kostopoulou A, Sygletou M, Kenanakis G and Stratakis E 2018 ACS Omega 3 16728
[50] Oztas T, Sen H S, Durgun E and Ortac B 2014 J. Phys. Chem. C 118 30120
[51] Baldovi H G, Latorre-Sanchez M, Esteve-Adell I, Khan A, Asiri A M, Kosa S A and Garcia H 2016 J. Nanopart. Res. 18 240
[52] Wu X, Tian X, Chen T, Zeng A and Yang G 2018 Nanotechnology 29 295604
[53] Schuffenhauer C, Parkinson B A, Jin-Phillipp N Y, Joly-Pottuz L, Martin J M, Popovitz-Biro R and Tenne R 2005 Small 1 1100
[54] Hu J J, Zabinski J S, Bultman J E, Sanders J H and Voevodin A A 2008 Cryst. Growth Des. 8 2603
[55] Zak A, Feldman Y, Alperovich V, Rosentsveig R and Tenne R 2000 J. Am. Chem. Soc. 122 11108
[56] Weber T, Muijsers J C, vanWolput H, Verhagen C P J and Niemantsverdriet J W 1996 J. Phys. Chem. 100 14144
[57] Seo J W, Jun Y W, Park S W, Nah H, Moon T, Park B, Kim J G, Kim Y J and Cheon J 2007 Angew. Chem. Int. Ed. 46 8828
[58] Sharifi T, Gracia-Espino E, Barzegar H R, Jia X E, Nitze F, Hu G Z, Nordblad P, Tai C W and Wagberg T 2013 Nat. Commun. 4 2319
[59] Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S and Shen Z 2014 Small 10 1090
[60] Xu Y Y, Yang C, Jiang S Z, Man B Y, Liu M, Chen C S, Zhang C, Sun Z C, Qiu H W and Li H S 2015 Appl. Surf. Sci. 357 1708
[61] Xu H, Xie L M, Zhang H L and Zhang J 2011 ACS Nano 5 5338
[1] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[2] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[3] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[4] Ab initio study on the anisotropy of mechanical behavior and deformation mechanism for boron carbide
Jun Li(李君), Shuang Xu(徐爽), Jin-Yong Zhang(张金咏), Li-Sheng Liu(刘立胜), Qi-Wen Liu(刘齐文), Wu-Chang She(佘武昌), Zheng-Yi Fu(傅正义). Chin. Phys. B, 2017, 26(4): 047101.
[5] Effect of stress state on deformation and fracture of nanocrystalline copper:Molecular dynamics simulation
Zhang Liang (张亮), Lü Cheng (吕程), Kiet Tieu, Pei Lin-Qing (裴林清), Zhao Xing (赵星). Chin. Phys. B, 2014, 23(9): 098102.
[6] Wettability and formation mechanism of ZnO micro-spheres composed film
Yang Zhou(杨周), Xu Xiao-Liang(许小亮), Gong Mao-Gang(公茂刚), Liu Ling(刘玲), and Liu Yan-Song(刘艳松). Chin. Phys. B, 2010, 19(12): 126103.
[7] Numerical investigation of the deformation mechanism of a bubble or a drop rising or falling in another fluid
Wang Han(王含), Zhang Zhen-Yu(张振宇), Yang Yong-Ming(杨永明), Hu Yüe(胡越), and Zhang Hui-Sheng(张慧生). Chin. Phys. B, 2008, 17(10): 3847-3855.
[8] Ion source effect on the bond length of 4HeH+
Miao Jing-Wei (缪竞威), Wang Hu (王虎), Zhu Zhou-Sen (朱洲森), Yang Chao-Wen (杨朝文), Shi Mian-Gong (师勉恭), Tang A-You (唐阿友), Miao Lei (缪蕾), Xu Zu-Run (许祖润), Yuan Xue-Dong (袁学东), Liu Xiao-Dong (刘晓东), Yang Bei-Fang (杨百方). Chin. Phys. B, 2005, 14(9): 1803-1807.
[9] The formation mechanism and the binding energy of the body-centred regular tetrahedral structure of He+5
Li Ping (李萍), Xiong Yong (熊勇), Gou Qing-Quan (芶清泉), Zhang Jian-Ping (张建平). Chin. Phys. B, 2002, 11(10): 1018-1021.
No Suggested Reading articles found!