INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model |
Yue Chen(陈约)1,2, Fuliang Guo(郭福亮)1,2, Lufeng Yang(杨陆峰)1, Jiaze Lu(卢嘉泽)1, Danna Liu(刘丹娜)3, Huayu Wang(王华宇)4,5, Jieyun Zheng(郑杰允)1, Xiqian Yu(禹习谦)1, and Hong Li(李泓)1,2,3,5,† |
1 Beijing Advanced Innovation Center for Materials Genome Engineering, Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing WeLion New Energy Technology Co., Ltd., Beijing 100176, China; 4 Li Auto Inc., Beijing 101399, China; 5 Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang 213300, China |
|
|
Abstract Silicon-graphite (Si-Gr) composite anodes are attractive alternatives to replace Gr anodes for lithium-ion batteries (LIBs) owing to their relatively high capacity and mild volume change. However, it is difficult to understand electrochemical interactions of Si and Gr in Si-Gr composite anodes and internal polarization of LIBs with regular experiment methods. Herein, we establish an electrochemical-mechanical coupled model to study the effect of rate and Si content on the electrochemical and stress behavior in a Si-Gr composite anode. The results show that the composites of Si and Gr not only improve the lithiation kinetics of Gr but also alleviate the voltage hysteresis of Si and decrease the risk of lithium plating in the negative electrode. What's more, the Si content is a tradeoff between electrode capacity and electrode volume variation. Further, various internal polarization contributions of cells using Si-Gr composite anodes are quantified by the voltage decomposition method. The results indicate that the electrochemical polarization of electrode materials and the electrolyte ohmic over-potential are dominant factors in the rate performance of cells, which provides theoretical guidance for improving the rate performance of LIBs using Si-Gr composite anodes.
|
Received: 10 January 2022
Revised: 14 February 2022
Accepted manuscript online: 23 March 2022
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
65.40.gk
|
(Electrochemical properties)
|
|
82.45.Fk
|
(Electrodes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFE0100200), the National Natural Science Foundation of China (Grant No. U1964205), and the Beijing Municipal Science and Technology Commission (Grant No. Z191100004719001). |
Corresponding Authors:
Hong Li
E-mail: hli@iphy.ac.cn
|
Cite this article:
Yue Chen(陈约), Fuliang Guo(郭福亮), Lufeng Yang(杨陆峰), Jiaze Lu(卢嘉泽), Danna Liu(刘丹娜), Huayu Wang(王华宇), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), and Hong Li(李泓) Probing component contributions and internal polarization in silicon-graphite composite anode for lithium-ion batteries with an electrochemical-mechanical model 2022 Chin. Phys. B 31 078201
|
[1] Duffner F, Kronemeyer N, Tubke J, Leker J, Winter M and Schmuch R 2021 Nat. Energy 6 123 [2] Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng Y S and Van der Ven A 2017 Adv. Energy Mater. 7 1602888 [3] Xia Y, Zheng J M, Wang C M and Gu M 2018 Nano Energy 49 434 [4] Zuo C J, Hu Z X, Qi R, Liu J J, Li Z B, Lu J L, Dong C, Yang K, Huang W Y, Chen C, Song Z B, Song S C, Yu Y M, Zheng J X and Pan F 2020 Adv. Energy Mater. 10 2000363 [5] Xu C Y, Li J L, Feng X Y, Zhao J W, Tang C J, Ji B M, Hu J, Cao C B, Zhu Y Q and Butt F K 2020 Electrochim. Acta 358 136901 [6] Wenjun L 2020 Energy Storage Sci. Technol. 9 448 (in Chinese) [7] Yao K P C, Okasinski J S, Kalaga K, Almer J D and Abraham D P 2019 Adv. Energy Mater. 9 1803380 [8] Berhaut C L, Dominguez D Z, Kumar P, Jouneau P H, Porcher W, Aradilla D, Tardif S, Pouget S and Lyonnard S 2019 Acs Nano 13 11538 [9] Richter K, Waldmann T, Paul N, Jobst N, Scurtu R G, Hofmann M, Gilles R and Wohlfahrt-Mehrens M 2020 ChemSusChem 13 529 [10] Moon J, Lee H C, Jung H, Wakita S, Cho S, Yoon J, Lee J, Ueda A, Choi B, Lee S, Ito K, Kubo Y, Lim A C, Seo J G, Yoo J, Lee S, Ham Y, Baek W, Ryu Y G and Han I T 2021 Nat. Commun. 12 2714 [11] Heubner C, Liebmann T, Lohrberg O, Cangaz S, Maletti S and Michaelis A 2021 Batteries & Supercaps 5 e202100182 [12] Chandrasekaran R, Magasinski A, Yushin G and Fuller T F 2010 J. Electrochem. Soc. 157 A1139 [13] Chandrasekaran R and Fuller T F 2011 J. Electrochem. Soc. 158 A859 [14] Smith R B, Khoo E and Bazant M Z 2017 J. Phys. Chem. C 121 12505 [15] Chandesris M, Caliste D, Jamet D and Pochet P 2019 J. Phys. Chem. C 123 23711 [16] Liu B H, Jia Y K, Li J N, Jiang H Q, Yin S and Xu J 2020 J. Power Sources 450 227667 [17] Liu B H, Wang X, Chen H S, Chen S, Yang H X, Xu J, Jiang H Q and Fang D N 2019 J. Appl. Mech.-Trans. Asme 86 041005 [18] Pereira D J, Weidner J W and Garrick T R 2019 J. Electrochem. Soc. 166 A1251 [19] Lory P F, Mathieu B, Genies S, Reynier Y, Boulineau A, Hong W and Chandesris M 2020 J. Electrochem. Soc. 167 120506 [20] Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202 [21] Doyle M and Newman J 1995 Electrochim. Acta 40 2191 [22] Christensen J and Newman J 2006 J. Electrochem. Soc. 153 A1019 [23] Christensen J and Newman J 2006 J. Solid State Electrochem. 10 293 [24] Nyman A, Zavalis T G, Elger R, Behm M and Lindbergh G 2010 J. Electrochem. Soc. 157 A1236 [25] Sturm J, Rheinfeld A, Zilberman I, Spingler F B, Kosch S, Frie F and Jossen A 2019 J. Power Sources 412 204 [26] Doyle M, Newman J, Gozdz A S, Schmutz C N and Tarascon J M 1996 J. Electrochem. Soc. 143 1890 [27] Li H G, Liu B H, Zhou D and Zhang C 2020 J. Electrochem. Soc. 167 120501 [28] Pan K, Zou F, Canova M, Zhu Y and Kim J H 2019 J. Power Sources 413 20 [29] Louli A J, Li J, Trussler S, Fell C R and Dahn J R 2017 J. Electrochem. Soc. 164 A2689 [30] Chevrier V L and Dahn J R 2009 J. Electrochem. Soc. 156 A454 [31] Sethuraman V A, Chon M J, Shimshak M, Srinivasan V and Guduru P R 2010 J. Power Sources 195 5062 [32] Baggetto L, Niessen R A H, Roozeboom F and Notten P H L 2008 Adv. Funct. Mater. 18 1057 [33] Vidal D, Leys C, Mathieu B, Guillet N, Vidal V, Borschneck D, Chaurand P, Genies S, De Vito E, Tulodziecki M and Porcher W 2021 J. Power Sources 514 230552 [34] Yu P, Popov B N, Ritter J A and White R E 1999 J. Electrochem. Soc. 146 8 [35] McDowell M T, Lee S W, Harris J T, Korgel B A, Wang C M, Nix W D and Cui Y 2013 Nano Lett. 13 758 [36] de Vasconcelos L S, Xu R and Zhao K J 2020 J. Mech. Phys. Solids 144 104102 [37] Mei W X, Jiang L H, Liang C, Sun J H and Wang Q S 2021 Energy Storage Mater. 41 209 [38] Kim J, Jeghan S M N and Lee G 2020 Microporous Mesoporous Mater. 305 110325 [39] Sattar T, Sim S J, Jin B S and Kim H S 2021 Sci. Rep. 11 18590 [40] Jung C H, Shim H, Eum D and Hong S H 2021 J. Korean Ceram. Soc. 58 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|