Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 075202    DOI: 10.1088/1674-1056/ac4906
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster

Hao Mou(牟浩)1, Yi-Zhou Jin(金逸舟)2, Juan Yang(杨涓)1,†, Xu Xia(夏旭)1, and Yu-Liang Fu(付瑜亮)1
1 College of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2 Shanghai Institute of Space Electric Propulsion, Shanghai 200000, China
Abstract  Through diagnosing the plasma density and calculating the intensity of microwave electric field, four 10 cm electron cyclotron resonance (ECR) ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma, magnetic field and microwave electric field. From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level. Based on the cold plasma hypothesis and diagnosing result, the microwave electric field intensity distribution in the plasma is calculated. The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape. From the boundary region of the shape to the center, the electric field intensity varies from higher to lower and the diagnosed density inversely changes. If the bow and its inside lower electric field intensity region are close to the screen grid, the performance of ion beam extracting will be better. The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.
Keywords:  electron cyclotron resonance plasma      plasma diagnosing      ion source  
Received:  05 October 2021      Revised:  02 January 2022      Accepted manuscript online:  07 January 2022
PACS:  52.75.Di (Ion and plasma propulsion)  
  52.70.-m (Plasma diagnostic techniques and instrumentation)  
  52.75.-d (Plasma devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875222).
Corresponding Authors:  Juan Yang     E-mail:  yangjuan@nwpu.edu.cn

Cite this article: 

Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮) Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster 2022 Chin. Phys. B 31 075202

[1] Funaki I, Kuninaka H and Toki K 2004 J. Propul. Power 20 718
[2] Kuninaka H, Nishiyama K, Funaki I, Shimizu Y, Yamada T and Kawaguchi J 2010 IEEE Trans. Plasma Sci. 34 2125
[3] Normile D 2010 Science 328 565
[4] Leva D, Myers M R, Lemmer M K, Kolbeck J, Koizumi H and Polzin K 2009 Acta Astronaut. 159 213
[5] Little B and Jugroot M 2019 Vacuum 164 367
[6] Jackson S W and Marshall R 2018 J. Spacecr. Rockets 55 632
[7] Wahlstrand J K, Cheng Y H, Chen Y H and Michberg H M 2011 Phys. Rev. Lett. 107 103901
[8] Fritsche B, Chevolleau T, Kourtev J, Kolitsch A and Möller W 2003 Vacuum 69 139
[9] Jin Y Z, Yang J, Feng B B, Luo L T and Tang M J 2016 Acta Phys. Sin. 65 045201 (in Chinese)
[10] Coral G, Tsukizaki R, Nishiyama K and Kuninaka H 2018 Plasma Sources Sci. Technol. 27 095015
[11] Tani Y, Tsukizaki R, Koda D, Nishiyama K and Kuninaka H 2019 Acta Astronaut. 157 425
[12] Jin Y Z, Yang J, Tang M J, Luo L T and Feng B B 2016 Plasma Sci. Technol. 18 744
[13] Celona L, Gammino S, Ciavola G, Maimone F and Mascali D 2010 Rev. Sci. Instrum. 81 02A333
[14] Sado P and Fredriksen A 2020 IEEE Trans. Plasma Sci. 48 4181
[15] Ise T, Tsukizaki R, Togo H, Koizumi H and Kuninaka H 2012 Rev. Sci. Instrum. 83 124702
[16] Yamashita Y, Tani Y, Tsukizaki R, Koda D and Nishiyama K 2019 Phys. Plasmas 26 073510
[17] Torrisi G, Mascali D, Sorbello G, Neri L, Celona L, Castro G, Isernia T and Gammino S 2014 J. Electromagnetic Wave 28 1085
[18] Chen F F 1974 Introduction to Plasma Physics (New York:Springer US)
[19] Kato Y, Yano K, Nishiokada T, Nagaya T, Kimura D, Kumakura S, Imai Y, Hagino S, Otsuka T and Sato F 2016 Rev. Sci. Instrum. 87 02A710
[20] Xia X, Yang J, Jin Y Z, Hang G R, Fu Y L and Hu Z 2020 Vacuum 179 109517
[21] Yang J, Fu Y L, Liu X C, Meng H B and Jin Y Z 2018 Plasma Sci. Technol. 20 085402
[22] Fu Y L, Yang J, Geng H, Wu X C, Hu Z and Xia X 2020 Vacuum 184 109932
[23] Guo S H 2008 Electrodynamics (Beijing:Higher Education Press)
[24] Goebel D M and Katz I 2008 Fundamentals of Electric Propulsion:Ion and Hall Thrusters (New Jersey:John Wiley & Sons)
[1] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[2] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[3] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[4] A miniaturized 2.45 GHz ECR ion source at Peking University
Jia-Mei Wen(温佳美), Shi-Xiang Peng(彭士香), Hai-Tao Ren(任海涛), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Wen-Bin Wu(武文斌), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(5): 055204.
[5] Practical 2.45-GHz microwave-driven Cs-free H- ion source developed at Peking University
Tao Zhang(张滔), Shi-Xiang Peng(彭士香), Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Teng-Hao Ma(马腾昊), Yao-Xiang Jiang(蒋耀湘), Jiang Sun(孙江), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2018, 27(10): 105208.
[6] Understanding hydrogen plasma processes based on the diagnostic results of 2.45 GHz ECRIS at Peking University
Wen-Bin Wu(武文斌), Hai-Tao Ren(任海涛), Shi-Xiang Peng(彭士香), Yuan Xu(徐源), Jia-Mei Wen(温佳美), Jiang Sun(孙江), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(9): 095204.
[7] Surface enhancement of molecular ion H2+ yield in a 2.45-GHz electron-cyclotron resonance ion source
Yuan Xu(徐源), Shi-Xiang Peng(彭士香), Hai-Tao Ren(任海涛), Ai-Lin Zhang(张艾霖), Tao Zhang(张滔), Jing-Feng Zhang(张景丰), Jia-Mei Wen(温佳美), Wen-Bin Wu(武文斌), Zhi-Yu Guo(郭之虞), Jia-Er Chen(陈佳洱). Chin. Phys. B, 2017, 26(8): 085203.
[8] Influence of a centered dielectric tube on inductively coupled plasma source: Chamber structures and plasma characteristics
Zhen-Hua Bi(毕振华), Yi Hong(洪义), Guang-Jiu Lei(雷光玖), Shuai Wang(王帅), You-Nian Wang(王友年), Dong-Ping Liu(刘东平). Chin. Phys. B, 2017, 26(7): 075203.
[9] Continuous operation of 2.45-GHz microwave proton source for 306 hours with more than 50 mA DC beam
Peng Shi-Xiang (彭士香), Zhang Ai-Lin (张艾霖), Ren Hai-Tao (任海涛), Zhang Tao (张滔), Xu Yuan (徐源), Zhang Jing-Feng (张景丰), Gong Jian-Hua (龚建华), Guo Zhi-Yu (郭之虞), Chen Jia-Er (陈佳洱). Chin. Phys. B, 2015, 24(7): 075203.
[10] Reception pattern influence on magnetoacoustic tomography with magnetic induction
Sun Xiao-Dong (孙晓冬), Wang Xin (王欣), Zhou Yu-Qi (周雨琦), Ma Qing-Yu (马青玉), Zhang Dong (章东). Chin. Phys. B, 2015, 24(1): 014302.
[11] Three-dimensional PIC/MCC simulation of electron deposition in JAEA 10 A ion sources
Yang Chao (杨超), Yin Mao-Wei (印茂伟), Shang Li-Ping (尚丽平), Wei Ai-Yong (韦爱勇). Chin. Phys. B, 2014, 23(9): 095201.
[12] Penetrating view of nano-structures in Aleochara verna spermatheca and flagellum by hard X-ray microscopy
Zhang Kai (张凯), Li Dee (李德娥), Hong You-Li (洪友丽), Zhu Pei-Ping (朱佩平), Yuan Qing-Xi (袁清习), Huang Wan-Xia (黄万霞), Gao Kun (高昆), Zhou Hong-Zhang (周红章), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2013, 22(7): 076801.
[13] Numerical analysis of high Mach flow and flow reversal in the experimental advanced superconducting tokamak divertor
Ou Jing(欧靖) and Yang Jin-Hong(杨锦宏) . Chin. Phys. B, 2011, 20(9): 095201.
[14] The modulation of Schottky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique
An Xia(安霞), Fan Chun-Hui(范春晖), Huang Ru(黄如), Guo Yue(郭岳), Xu Cong(徐聪), Zhang Xing(张兴), and Wang Yang-Yuan(王阳元). Chin. Phys. B, 2009, 18(10): 4465-4469.
[15] Ion source effect on the bond length of 4HeH+
Miao Jing-Wei (缪竞威), Wang Hu (王虎), Zhu Zhou-Sen (朱洲森), Yang Chao-Wen (杨朝文), Shi Mian-Gong (师勉恭), Tang A-You (唐阿友), Miao Lei (缪蕾), Xu Zu-Run (许祖润), Yuan Xue-Dong (袁学东), Liu Xiao-Dong (刘晓东), Yang Bei-Fang (杨百方). Chin. Phys. B, 2005, 14(9): 1803-1807.
No Suggested Reading articles found!