Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 075203    DOI: 10.1088/1674-1056/ac40fd
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Plasma-wave interaction in helicon plasmas near the lower hybrid frequency

Yide Zhao(赵以德)1, Jinwei Bai(白进纬)2, Yong Cao(曹勇)2, Siyu Wu(吴思宇)2, Eduardo Ahedo3, Mario Merino3, and Bin Tian(田滨)2,†
1 Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
2 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China;
3 Equipo de Propulsión Espacial y Plasmas(EP2), Universidad Carlos III de Madrid, 28911 Leganés, Spain
Abstract  We study the characteristics of plasma-wave interaction in helicon plasmas near the lower hybrid frequency. The (0D) dispersion relation is derived to analyze the properties of the wave propagation and a 1D cylindrical plasma-wave interaction model is established to investigate the power deposition and to implement the parametric analysis. It is concluded that the lower hybrid resonance is the main mechanism of the power deposition in helicon plasmas when the RF frequency is near the lower hybrid frequency and the power deposition mainly concentrates on a very thin layer near the boundary. Therefore, it causes that the plasma resistance has a large local peak near the lower hybrid frequency and the variation of the plasma density and the parallel wavenumber lead to the frequency shifting of the local peaks. It is found that the magnetic field is still proportional to the plasma density for the local maximum plasma resistance and the slope changes due to the transition.
Keywords:  helicon plasmas      lower hybrid frequency      power deposition  
Received:  16 September 2021      Revised:  06 December 2021      Accepted manuscript online:  08 December 2021
PACS:  52.50.Dg (Plasma sources)  
  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
Fund: Project supported by the Open Fund for Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics (Grant No. ZWK1703). The authors also acknowledge the support of the National Natural Science Foundation of China (Grant No. 51907039) and Shenzhen Technology Project (Grant Nos. JCYJ20190806142603534 and ZDSYS201707280904031). The contribution of E. Ahedo and M. Merino has been supported by the ESPEOS project (Grant No. PID2019-108034RB-I00/AEI/10.13039/501100011033), funded by the Agencia Estatal de Investigacion (Spanish National Research Agency).
Corresponding Authors:  Bin Tian     E-mail:  tianbin@hit.edu.cn

Cite this article: 

Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨) Plasma-wave interaction in helicon plasmas near the lower hybrid frequency 2022 Chin. Phys. B 31 075203

[1] Nicholas A K and Paulett C L 1971 Phys. Rev. A 4 2094
[2] Huba J D and Wu C S 1976 Phys. Fluids 19 988
[3] Norgren C 2011 Lower hybrid drift wave properties in space plasma (Master thesis) (Sweden:Uppsala University)
[4] Xiao F L, Yang C, Su Z P, Zhou Q H, He Z G, He Y H Baker D N, Spence H E, Funsten H O and Blake J B 2015 Nat. Commun. 6 8590
[5] Yang C, Su Z P, Xiao F L, Zheng H N, Wang Y M, Wang S, Spence H E, Reeves G D, Baker D N and Blake J B 2017 Geophys. Res. Lett. 44 3980
[6] Boswell R W 1984 Plasma Phys. Control Fusion 26 1147
[7] Zhu P Y and Boswell R W 1989 Phys. Rev. Lett. 63 2805
[8] Yun S M, Kim J H and Chang H Y 1997 J. Vac. Sci. Technol. A 15 673
[9] Cho S W and Swanson D G 1988 Phys. Fluids 31 1123
[10] Balkey M M, Boivin R, Kline J L and Scime E E 2001 Plasma Sources Sci. Technol. 10 284
[11] Mori Y, Nakashima H, Baity F W, Goulding R H, Carter M D and Sparks D O 2004 Plasma Sources Sci. Technol. 13 424
[12] Chen F F, Schweickhard E and Goeler V 1985 Introduction to plasma physics and controlled fusion Volume 1:Plasma physics (Boston:Springer) p. 113
[13] Cho S W 2000 Phys. Plasmas 7 417
[14] Yun S M and Chang H Y 1997 Phys. Lett. A 248 400
[15] Kwak J G, Kim S K and Cho S W 2000 Phys. Lett. A 267 384
[16] Scime E E, Keiter P A, Balker M M, Kline J L, Sun X, Keesee A M, Hardin R A, Biloiu I A, Houshmandyar S and Thakur S C 2015 J. Plasma Phys. 81 345810103
[17] Buttenschon B, Fahrenkamp N and Grulke O 2018 Plasma Phys. Control Fusion 60 075005
[18] Lieberman M A and Lichtenberg A J 2005 Principles of plasma discharges and materials processing (Chichester:John Wiley & Sons) p. 112
[19] Shamrai K P and Taranov V B 1996 Plasma Sources Sci. Technol. 5 474
[20] Cho S W 1996 Phys. Plasmas 3 4268
[21] Ahedo E 2011 Plasma Phys. Control Fusion 53 124037
[22] Shamrai K P and Taranov V B 1994 Plasma Phys. Control Fusion 36 1719
[23] Chen F F and Arnush D 1997 Phys. Plasmas 4 3411
[24] Arnush D and Chen F F 1998 Phys. Plasmas 5 1239
[25] Chen F F and Blackwell D D 1999 Phys. Rev. Lett. 82 2677
[26] Shamrai K P, Pavlenko V P and Taranov V B 1997 Plasma Phys. Control Fusion 39 505
[27] Tian B, Merino M and Ahedo E 2018 Plasma Sources Sci. Technol. 27 114003
[28] Navarro J C 2013 The 33rd International Electric Propulsion Conference, October 6-10, 2013, Washington, D.C., USA, paper EPC-2013-285
[29] Chen G Y, Arefiev Alexey V, Bengtson R D, Breizman B N, Lee C A and Raja L L 2006 Phys. Plasmas 13 123507
[30] Tian B 2015 The 34rd International Electric Propulsion Conference, July 4-10, 2015, Hyogo-Kobe, Japan, paper IEPC-2015-326/ISTS-2015-B-326
[31] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001
[32] Chen F F and Boswell R W 1997 IEEE T. Plasma Sci. 25 1245
[33] Chen F F 1991 Plasma Phys. Control Fusion 33 339
[34] Lafleur T, Charles C and Boswell R W 2011 J. Phys. D:Appl. Phys. 44 055202
[1] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
No Suggested Reading articles found!