Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 014302    DOI: 10.1088/1674-1056/24/1/014302
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reception pattern influence on magnetoacoustic tomography with magnetic induction

Sun Xiao-Dong (孙晓冬)a, Wang Xin (王欣)a, Zhou Yu-Qi (周雨琦)a, Ma Qing-Yu (马青玉)a b, Zhang Dong (章东)b
a Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
b Laboratory of Modern Acoustics of MOE, Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  

Based on the acoustic radiation theory of a dipole source, the influence of the transducer reception pattern is studied for magnetoacoustic tomography with magnetic induction (MAT-MI). Numerical studies are conducted to simulate acoustic pressures, waveforms, and reconstructed images with unidirectional, omnidirectional, and strong directional transducers. With the analyses of equivalent and projection sources, the influences of the model dimension and the layer effect are qualitatively analyzed to evaluate the performance of MAT-MI. Three-dimensional simulation studies show that the strong directional transducer with a large radius can reduce the influences of equivalent sources, projection sources, and the layer effect effectively, resulting in enhanced pressure and improved image contrast, which is beneficial for boundary pressure extraction in conductivity reconstruction. The reconstructed conductivity contrast images present the conductivity boundaries as stripes with different contrasts and polarities, representing the values and directions of the conductivity changes of the scanned layer. The favorable results provide solid evidence for transducer selection and suggest potential practical applications of MAT-MI in biomedical imaging.

Keywords:  magnetoacoustic tomography with magnetic induction (MAT-MI)      reception pattern      projection source and equivalent source      layer effects  
Received:  10 July 2014      Revised:  07 August 2014      Accepted manuscript online: 
PACS:  43.80.Ev (Acoustical measurement methods in biological systems and media)  
  72.55.+s (Magnetoacoustic effects)  
  73.50.Rb (Acoustoelectric and magnetoacoustic effects)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2011CB707900), the National Natural Science Foundation of China (Grant Nos 11274176 and 11474166), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Corresponding Authors:  Ma Qing-Yu     E-mail:  maqingyu@njnu.edu.cn

Cite this article: 

Sun Xiao-Dong (孙晓冬), Wang Xin (王欣), Zhou Yu-Qi (周雨琦), Ma Qing-Yu (马青玉), Zhang Dong (章东) Reception pattern influence on magnetoacoustic tomography with magnetic induction 2015 Chin. Phys. B 24 014302

[1] Xu Y and He B 2005 Phys. Med. Biol. 50 5175
[2] Li X, Xu Y and He B 2007 IEEE Trans. Biomed. Eng. 54 323
[3] Hu G, Li X and He B 2010 Appl. Phys. Lett. 97 103705
[4] Hu G and He B 2011 PLoS ONE 6 e23421
[5] Xia R M, Li X and He B 2007 Appl. Phys. Lett. 91 83903
[6] Hu G and He B 2012 Appl. Phys. Lett. 100 013704
[7] Mariappan L and He B 2013 IEEE Trans. Med. Imag. 32 619
[8] Li X, Hu S, Li L and Zhu S 2013 Comput. Math. Methods Med. 2013 161357
[9] Mariappan L, Hu G and He B 2014 Med. Phys. 41 022902
[10] Ma Q Y and He B 2007 Phys. Med. Biol. 52 5085
[11] Ma Q Y and He B 2008 IEEE Trans. Bio. Eng. 55 813
[12] Li X, Mariappan L and He B 2010 J. Appl. Phys. 108 124702
[13] Li Y L, Ma Q Y, Zhang D and Xia R M 2011 Chin. Phys. B 20 084302
[14] Li Y L, Liu Z B, Ma Q Y, Guo X S and Zhang D 2010 Chin. Phys. Lett. 27 084302
[15] Ma Q Y and Chen J Z 2009 2nd Int. Conf. on Biomed. Eng. Inform. 2009 5305122
[16] Sun X D, Fang D W, Zhang D and Ma Q Y 2013 Med. Phys. 40 052902
[17] Wang K, Ermilov S A, Su R, Brecht H P, Oraevsky A A and Anastasio M A 2011 IEEE Trans. Med. Imag. 30 203
[18] Mitsuhashi K, Wang K and Anastasio M A 2014 Photoacoustics 2 21
[19] Kinsler L E, Frey A R, Coppens A B and Sanders J V 2000 Fundamentals of Acoustics (4th edn.) (New York: John Wiley & Sons)
[20] Morse P M and Feshbach H 1953 Methods of Theoretical Physics (New York: McGraw-Hill)
[21] Sun X D, Zhang F, Ma Q Y, Tu J and Zhang D 2012 Appl. Phys. Lett. 100 024105
[22] Xu Y and Wang L V 2004 Phys. Rev. Lett. 92 033902
[23] Bi C X, Hu D Y, Zhang Y B and Xu L 2013 Acta Phys. Sin. 62 084301 (in Chinese)
[24] Zhao G M, Lu M Z, Wan M X and Li F 2009 Acta Phys. Sin. 58 6596 (in Chinese)
[1] Nonlinear inversion of ultrasonic guided waves for in vivo evaluation of cortical bone properties
Xiaojun Song(宋小军), Tiandi Fan(樊天地), Jundong Zeng(曾俊冬), Qin-Zhen Shi(石勤振), Qiong Huang(黄琼), Meilin Gu(顾美琳), Petro Moilanen, Yi-Fang Li(李义方), and Dean Ta(他得安). Chin. Phys. B, 2022, 31(7): 074301.
[2] Assessment of cortical bone fatigue using coded nonlinear ultrasound
Duwei Liu(刘度为), Boyi Li(李博艺), Dongsheng Bi(毕东生), Tho N. H. T. Tran, Yifang Li(李义方), Dan Liu(刘丹), Ying Li(李颖), and Dean Ta(他得安). Chin. Phys. B, 2021, 30(9): 094301.
[3] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[4] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
[5] Boundary normal pressure-based electrical conductivity reconstruction for magneto-acoustic tomography with magnetic induction
Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉). Chin. Phys. B, 2017, 26(8): 084301.
[6] Acoustic dipole radiation model for magnetoacoustic tomography with magnetic induction
Li Yi-Ling(李宜令), Ma Qing-Yu(马青玉), Zhang Dong(章东), and Xia Rong-Min(夏荣民). Chin. Phys. B, 2011, 20(8): 084302.
No Suggested Reading articles found!