Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 064202    DOI: 10.1088/1674-1056/ac48f7

Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm

Haipeng Zhang(张海鹏)1,2,3, Ke Li(李可)2, Changzhe Zhao(赵昌哲)1,2,3, Jie Tang(汤杰), and Tiqiao Xiao(肖体乔)1,2,3,†
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Towards efficient implementation of x-ray ghost imaging (XGI), efficient data acquisition and fast image reconstruction together with high image quality are preferred. In view of radiation dose resulted from the incident x-rays, fewer measurements with sufficient signal-to-noise ratio (SNR) are always anticipated. Available methods based on linear and compressive sensing algorithms cannot meet all the requirements simultaneously. In this paper, a method based on a modified compressive sensing algorithm with conjugate gradient descent method (CGDGI) is developed to solve the problems encountered in available XGI methods. Simulation and experiments demonstrate the practicability of CGDGI-based method for the efficient implementation of XGI. The image reconstruction time of sub-second implicates that the proposed method has the potential for real-time XGI.
Keywords:  x-ray ghost imaging      modified compressive sensing algorithm      real-time x-ray imaging  
Received:  22 September 2021      Revised:  02 January 2022      Accepted manuscript online:  07 January 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0206004,2017YFA0206002, 2018YFC0206002, and 2017YFA0403801) and National Natural Science Foundation of China (Grant No. 81430087).
Corresponding Authors:  Tiqiao Xiao     E-mail:

Cite this article: 

Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔) Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm 2022 Chin. Phys. B 31 064202

[1] Ferri F, Magatti D, Gatti A, Bache M, Brambilla E and Lugiato L A 2005 Phys. Rev. Lett. 94 183062
[2] Yu H, Lu R H, Han S S, Xie H L, Du G H, Xiao T Q and Zhu D M 2016 Phys. Rev. Lett. 117 113901
[3] Huang Y Y, Ouyang C, Fang K, Dong Y F, Zhang J, Chen L M and Wu L A 2021 Chin. Phys. B 30 064202
[4] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[5] Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Chen J and Han S S 2007 Phys. Rev. A 75 021803
[6] Chen X H, Liu Q, Luo K H and Wu L A 2009 Opt. Lett. 34 695
[7] Chen X H, Agafonov I N, Luo K H, Liu Q, Xian R, Chekhova M V and Wu L A 2010 Opt. Lett. 35 1166
[8] Gong W L 2015 Photon. Res. 3 234
[9] Meng S Y, Shi W W, Ji J, Tao J J, Fu Q, Chen X H and Wu L A 2020 Chin. Phys. B 29 128704
[10] Oh J E, Cho Y W, Scarcelli G and Kim Y H 2013 Opt. Lett. 38 682
[11] Kingston A M, Fullagar W K, Myers G R, Adams D, Pelliccia D and Paganin D M 2021 Phys. Rev. A 103 033503
[12] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[13] Pelliccia D, Rack A, Schell M, Cantelli V and Paganin D M 2016 Phys. Rev. Lett. 117 113902
[14] Schori A and Shwartz S. 2017 Opt. Express 25 14822
[15] Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R and Paganin D M 2018 Optica 5 1516
[16] Wang L and Zhao S M 2020 Chin. Phys. B 29 024204
[17] Li E R, Chen M L, Gong W L, Wang H and Han S S 2012 Journal of Electronics (China) 29 617
[18] Rizvi S, Cao J, Zhang K Y and Hao Q 2020 Scientific Reports 10 11400
[19] Li Q, Duan Z T, Lin H Z, Gao S B, Sun S and Liu W T 2016 Chin. Opt. Lett. 14 111103
[20] Klein Y, Schori A, Dolbnya I P, Sawhney K and Shwartz S 2019 Opt. Express 27 3284
[21] Katz O, Bromberg Y and Siberberg Y 2009 Appl. Phys. Lett. 95 131110
[22] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[23] Ferri F, Magatti D, Lugiato L A and Gatti A 2010 Phys. Rev. Lett. 104 253603
[24] Li C 2011 An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing (Ph. D. dissertation) (Huston: Rice University)
[25] Wang J, Kwon S, Li P and Shim B 2016 IEEE Transactions on Signal Processing 64 1076
[26] Chen S S, Donoho D L and Saunders M A 1998 SIAM J. Sci. Comput. 20 33
[27] Martino D, Matias Flores J, Ayubi J L, Alonso G A, Fernandez J R, Ferrari A and Jose A 2012 Appl. Opt. 51 3439
[28] Wang Z, Bovik A C, Sheikh H R and Simoncelli E P 2004 Transactions on Image Processing (IEEE) 13 600
[29] Tang W J 2015 Research on Compressed Sensing Reconstruction Algorithm and Its Application in Wireless Sensor Networks (MS dissertation) (Nanjing: Nanjing University of Posts and telecommunications) (in Chinese)
[30] Yao X R, Yu W K, Liu X F, Li L Z, Li M F, Wu L A and Zhai G J 2014 Opt. Express 22 24268
[31] Zhang C, Guo S X, Cao J S, Guan J and Gao F L 2014 Opt. Express 22 30063
[32] Pelliccia D, Olbinado M, Rack A, Kingston A, Myers G and Paganin D M 2018 IUCrJ 5 428
[33] Gao C, Wang X Q, Cai H J, Ren J, Liu J Y and Yao Z H 2019 Chin. Phys. B 28 20201
[1] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[4] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[5] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[6] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[7] An apodized cubic phase mask used in a wavefront coding system to extend the depth of field
Lina Zhu(朱丽娜), Fei Li(李飞), Zeyu Huang(黄泽宇), and Tingyu Zhao(赵廷玉). Chin. Phys. B, 2022, 31(5): 054217.
[8] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[9] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[10] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[11] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[12] Refocusing and locating effect of fluorescence scattering field
Jian-Gong Cui(崔建功), Ya-Xin Yu(余亚鑫), Xiao-Xia Chu(楚晓霞), Rong-Yu Zhao(赵荣宇), Min Zhu(祝敏), Fan Meng(孟凡), and Wen-Dong Zhang(张文栋). Chin. Phys. B, 2021, 30(12): 124210.
[13] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[14] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[15] A fast and precise three-dimensional measurement system based on multiple parallel line lasers
Yao Wang(王尧) and Bin Lin(林斌). Chin. Phys. B, 2021, 30(2): 024201.
No Suggested Reading articles found!