Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 060305    DOI: 10.1088/1674-1056/ac4020
GENERAL Prev   Next  

Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates

Hao Zhu(朱浩)1, Shou-Gen Yin(印寿根)1,†, and Wu-Ming Liu(刘伍明)2,3,4,‡
1 Key Laboratory of Display Materials and Photoelectric Devices(Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the anisotropic spin-orbit coupled spin-2 Bose-Einstein condensates with Ioffe-Pritchard magnetic field. With nonzero magnetic field, anisotropic spin-orbit coupling will introduce several vortices and further generate a vortex chain. Inside the vortex chain, the vortices connect to each other, forming a line along the axis. The physical nature of the vortex chain can be explained by the particle current and the momentum distribution. The vortex number inside the vortex chain can be influenced via varying the magnetic field. Through adjusting the anisotropy of the spin-orbit coupling, the direction of the vortex chain is changed, and the vortex lattice can be triggered. Moreover, accompanied by the variation of the atomic interactions, the density and the momentum distribution of the vortex chain are affected. The realization and the detection of the vortex chain are compatible with current experimental techniques.
Keywords:  vortex chain      anisotropic spin-orbit coupling      magnetic field      Bose-Einstein condensates  
Received:  16 November 2021      Revised:  03 December 2021      Accepted manuscript online:  05 December 2021
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 61835013 and 11971067), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300), Beijing Natural Science Foundation (Grant No. 1182009), and Beijing Great Wall Talents Cultivation Program (Grant No. CIT&TCD20180325).
Corresponding Authors:  Shou-Gen Yin, Wu-Ming Liu     E-mail:;

Cite this article: 

Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明) Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates 2022 Chin. Phys. B 31 060305

[1] Durkin D and Fajans J 2000 Phys. Rev. Lett. 85 4052
[2] Koshelev A E 2005 Phys. Rev. B 71 174507
[3] Campbell L J 1989 Phys. Rev. A 39 5436
[4] Eto M, Konishi K, Marmorini G, Nitta M, Ohashi K, Vinci K and Yokoi N 2006 Phys. Rev. D 74 065021
[5] Hamner C, Zhang Y P, Chang J J, Zhang C W and Engels P 2013 Phys. Rev. Lett. 111 264101
[6] Wen L H, Qiao Y J, Xu Y and Mao L 2013 Phys. Rev. A 87 033604
[7] Churilov S and Stepanyants Y 2019 Phys. Rev. Fluids 4 034704
[8] Ferreira C N, Helayël-Neto J A and Ney W G 2008 Phys. Rev. D 77 105028
[9] Sadd M, Chester G V and Reatto L 1997 Phys. Rev. Lett. 79 2490
[10] Lim L K, Smith C M and Hemmerich A 2008 Phys. Rev. Lett. 100 130402
[11] Inui S, Nakagawa T and Tsubota M 2020 Phys. Rev. B 102 224511
[12] Koshelev A E, Willa K, Willa R, Smylie M P, Bao J K, Chung D Y, Kanatzidis M G, Kwok W K and Welp U 2019 Phys. Rev. B 100 094518
[13] Liarte D B, Hall D, Koufalis P N, Miyazaki A, Senanian A, Liepe L and Sethna J P 2018 Phys. Rev. Appl. 10 054057
[14] Cooper N R 1999 Phys. Rev. Lett. 82 1554
[15] Chanchal, Teja G P, Simon C and Goyal S K 2021 Phys. Rev. A 104 043713
[16] Kapale K T and Dowling J P 2005 Phys. Rev. Lett. 95 173601
[17] Yamaguchi T, Akashi N, Tsunegi S, Kubota H, Nakajima K and Taniguchi T 2020 Phys. Rev. Research 2 023389
[18] Deng D, Lin M, Li Y and Zhao H 2019 Phys. Rev. Applied 12 014048
[19] Ivanov I P 2012 Phys. Rev. A 85 033813
[20] Simula T P, Petersen T C and Paganin D M 2013 Phys. Rev. A 88 043626
[21] Sasaki K, Suzuki N, Akamatsu D and Saito H 2009 Phys. Rev. A 80 063611
[22] Wright K C, Leslie L S, Hansen A and Bigelow N P 2009 Phys. Rev. Lett. 102 030405
[23] McEndoo S and Busch T 2010 Phys. Rev. A 82 013628
[24] Saarikoski H, Reimann S M, Räsänen E, Harju A and Puska M J 2005 Phys. Rev. B 71 035421
[25] Cipriani M and Nitta M 2013 Phys. Rev. A 88 013634
[26] Stringari S 2017 Phys. Rev. Lett. 118 145302
[27] Qu C L and Stringari S 2018 Phys. Rev. Lett. 120 183202
[28] Jin J J, Han W and Zhang S Y 2018 Phys. Rev. A 98 063607
[29] Zhou X F, Zhou J and Wu C J 2011 Phys. Rev. A 84 063624
[30] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[31] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604
[32] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401
[33] Zhou K Z and Zhang Z D 2012 Phys. Rev. Lett. 108 025301
[34] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[35] Xu X Q and Han J H 2011 Phys. Rev. Lett. 101 200401
[36] Stanescu T D, Anderson B and Galitski V 2008 Phys. Rev. A 78 023616
[37] Ozawa T and Baym G 2012 Phys. Rev. A 85 013612
[38] Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602
[39] Liu C F, Fan H, Zhang Y C, Wang D S and Liu W M 2012 Phys. Rev. A 86 053616
[40] Wang J G and Yang S J 2018 J. Phys.: Condens. Matter 30 295404
[41] Wang J G and Li Y Q 2020 Commun. Theor. Phys. 72 095701
[42] Xu Z F, Kawaguchi Y, You L and Ueda M 2012 Phys. Rev. A 86 033628
[43] Saito H and Ueda M 2005 Phys. Rev. A 72 053628
[44] Ueda M and Koashi M 2002 Phys. Rev. A 65 063602
[45] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152
[46] Liu C F, Yu Y M, Gou S C and Liu W M 2013 Phys. Rev. A 87 063630
[47] Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett. 89 190403
[48] Leiler G and Rezzolla L 2006 Phys. Rev. D 73 044001
[49] Wang C J, Gao G, Jian C M and Hui Zhai 2010 Phys. Rev. Lett. 105 160403
[50] Mizushima T, Kobayashi N and Machida K 2004 Phys. Rev. A 70 043613
[51] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[4] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[7] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[8] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[9] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[10] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[11] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[12] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[13] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[14] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[15] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
No Suggested Reading articles found!