|
|
Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates |
Hao Zhu(朱浩)1, Shou-Gen Yin(印寿根)1,†, and Wu-Ming Liu(刘伍明)2,3,4,‡ |
1 Key Laboratory of Display Materials and Photoelectric Devices(Ministry of Education), Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate the anisotropic spin-orbit coupled spin-2 Bose-Einstein condensates with Ioffe-Pritchard magnetic field. With nonzero magnetic field, anisotropic spin-orbit coupling will introduce several vortices and further generate a vortex chain. Inside the vortex chain, the vortices connect to each other, forming a line along the axis. The physical nature of the vortex chain can be explained by the particle current and the momentum distribution. The vortex number inside the vortex chain can be influenced via varying the magnetic field. Through adjusting the anisotropy of the spin-orbit coupling, the direction of the vortex chain is changed, and the vortex lattice can be triggered. Moreover, accompanied by the variation of the atomic interactions, the density and the momentum distribution of the vortex chain are affected. The realization and the detection of the vortex chain are compatible with current experimental techniques.
|
Received: 16 November 2021
Revised: 03 December 2021
Accepted manuscript online: 05 December 2021
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
05.30.Jp
|
(Boson systems)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the National Natural Science Foundation of China (Grant Nos. 61835013 and 11971067), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300 and XDB21030300), Beijing Natural Science Foundation (Grant No. 1182009), and Beijing Great Wall Talents Cultivation Program (Grant No. CIT&TCD20180325). |
Corresponding Authors:
Shou-Gen Yin, Wu-Ming Liu
E-mail: sgyin@tjut.edu.cn;wmliu@iphy.ac.cn
|
Cite this article:
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明) Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates 2022 Chin. Phys. B 31 060305
|
[1] Durkin D and Fajans J 2000 Phys. Rev. Lett. 85 4052 [2] Koshelev A E 2005 Phys. Rev. B 71 174507 [3] Campbell L J 1989 Phys. Rev. A 39 5436 [4] Eto M, Konishi K, Marmorini G, Nitta M, Ohashi K, Vinci K and Yokoi N 2006 Phys. Rev. D 74 065021 [5] Hamner C, Zhang Y P, Chang J J, Zhang C W and Engels P 2013 Phys. Rev. Lett. 111 264101 [6] Wen L H, Qiao Y J, Xu Y and Mao L 2013 Phys. Rev. A 87 033604 [7] Churilov S and Stepanyants Y 2019 Phys. Rev. Fluids 4 034704 [8] Ferreira C N, Helayël-Neto J A and Ney W G 2008 Phys. Rev. D 77 105028 [9] Sadd M, Chester G V and Reatto L 1997 Phys. Rev. Lett. 79 2490 [10] Lim L K, Smith C M and Hemmerich A 2008 Phys. Rev. Lett. 100 130402 [11] Inui S, Nakagawa T and Tsubota M 2020 Phys. Rev. B 102 224511 [12] Koshelev A E, Willa K, Willa R, Smylie M P, Bao J K, Chung D Y, Kanatzidis M G, Kwok W K and Welp U 2019 Phys. Rev. B 100 094518 [13] Liarte D B, Hall D, Koufalis P N, Miyazaki A, Senanian A, Liepe L and Sethna J P 2018 Phys. Rev. Appl. 10 054057 [14] Cooper N R 1999 Phys. Rev. Lett. 82 1554 [15] Chanchal, Teja G P, Simon C and Goyal S K 2021 Phys. Rev. A 104 043713 [16] Kapale K T and Dowling J P 2005 Phys. Rev. Lett. 95 173601 [17] Yamaguchi T, Akashi N, Tsunegi S, Kubota H, Nakajima K and Taniguchi T 2020 Phys. Rev. Research 2 023389 [18] Deng D, Lin M, Li Y and Zhao H 2019 Phys. Rev. Applied 12 014048 [19] Ivanov I P 2012 Phys. Rev. A 85 033813 [20] Simula T P, Petersen T C and Paganin D M 2013 Phys. Rev. A 88 043626 [21] Sasaki K, Suzuki N, Akamatsu D and Saito H 2009 Phys. Rev. A 80 063611 [22] Wright K C, Leslie L S, Hansen A and Bigelow N P 2009 Phys. Rev. Lett. 102 030405 [23] McEndoo S and Busch T 2010 Phys. Rev. A 82 013628 [24] Saarikoski H, Reimann S M, Räsänen E, Harju A and Puska M J 2005 Phys. Rev. B 71 035421 [25] Cipriani M and Nitta M 2013 Phys. Rev. A 88 013634 [26] Stringari S 2017 Phys. Rev. Lett. 118 145302 [27] Qu C L and Stringari S 2018 Phys. Rev. Lett. 120 183202 [28] Jin J J, Han W and Zhang S Y 2018 Phys. Rev. A 98 063607 [29] Zhou X F, Zhou J and Wu C J 2011 Phys. Rev. A 84 063624 [30] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806 [31] Radić J, Sedrakyan T A, Spielman I B and Galitski V 2011 Phys. Rev. A 84 063604 [32] Sinha S, Nath R and Santos L 2011 Phys. Rev. Lett. 107 270401 [33] Zhou K Z and Zhang Z D 2012 Phys. Rev. Lett. 108 025301 [34] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302 [35] Xu X Q and Han J H 2011 Phys. Rev. Lett. 101 200401 [36] Stanescu T D, Anderson B and Galitski V 2008 Phys. Rev. A 78 023616 [37] Ozawa T and Baym G 2012 Phys. Rev. A 85 013612 [38] Xu Z F, Lü R and You L 2011 Phys. Rev. A 83 053602 [39] Liu C F, Fan H, Zhang Y C, Wang D S and Liu W M 2012 Phys. Rev. A 86 053616 [40] Wang J G and Yang S J 2018 J. Phys.: Condens. Matter 30 295404 [41] Wang J G and Li Y Q 2020 Commun. Theor. Phys. 72 095701 [42] Xu Z F, Kawaguchi Y, You L and Ueda M 2012 Phys. Rev. A 86 033628 [43] Saito H and Ueda M 2005 Phys. Rev. A 72 053628 [44] Ueda M and Koashi M 2002 Phys. Rev. A 65 063602 [45] Widera A, Gerbier F, Fölling S, Gericke T, Mandel O and Bloch I 2006 New J. Phys. 8 152 [46] Liu C F, Yu Y M, Gou S C and Liu W M 2013 Phys. Rev. A 87 063630 [47] Leanhardt A E, Görlitz A, Chikkatur A P, Kielpinski D, Shin Y, Pritchard D E and Ketterle W 2002 Phys. Rev. Lett. 89 190403 [48] Leiler G and Rezzolla L 2006 Phys. Rev. D 73 044001 [49] Wang C J, Gao G, Jian C M and Hui Zhai 2010 Phys. Rev. Lett. 105 160403 [50] Mizushima T, Kobayashi N and Machida K 2004 Phys. Rev. A 70 043613 [51] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|