Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛)1,2, Rui Liu(刘锐)2,1, Ke Chen(陈科)2,1,3, Xin Zhou(周昕)1,4,†, Rudolf Podgornik1,2,4,‡, and Mingcheng Yang(杨明成)2,1,3,§
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Abstract Diffusion of colloidal particles in microchannels has been extensively investigated, where the channel wall is either a no-slip or a slip-passive boundary. However, in the context of active fluids, driving boundary walls are ubiquitous and are expected to have a substantial effect on the particle dynamics. By mesoscale simulations, we study the diffusion of a chemically active colloidal particle in composite channels, which are constructed by alternately arranging the no-slip and diffusio-osmotic boundary walls. In this case, the chemical reaction catalyzed by the active colloidal particle creates a local chemical gradient along the channel wall, which drives a diffusio-osmotic flow parallel to the wall. We show that the diffusio-osmotic flow can significantly change the spatial distribution and diffusion dynamics of the colloidal particle in the composite channels. By modulating the surface properties of the channel wall, we can achieve different patterns of colloidal position distribution. The findings thus propose a novel possibility to manipulate colloidal diffusion in microfluidics, and highlight the importance of driving boundary walls in dynamics of colloidal particles in microchannels.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397, 11674365, and 11774393) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:
Xin Zhou, Rudolf Podgornik, Mingcheng Yang
E-mail: xzhou@ucas.ac.cn;rudipod@gmail.com;mcyang@iphy.ac.cn
Cite this article:
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成) Diffusion of a chemically active colloidal particle in composite channels 2022 Chin. Phys. B 31 044704
[1] Vale R D 2003 Cell112 467 [2] Ross J L, Ali M Y and Warshaw D M 2008 Curr. Opin. Plant Biol. 20 41 [3] Ross J L, Shuman H, Holzbaur E LF and Goldman Y E 2008 Biophys. J. 94 3115 [4] Howorka S and Siwy Z S 2012 Nat. Biotechnol. 30 506 [5] Gu L, Braha O, Conlan S, Cheley S and Bayley H 1999 Nature398 686 [6] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Science326 1241 [7] Shraiman, B I 1987 Phys. Rev. A36 261 [8] Kopperger E, Pirzer T and Simmel F C 2015 Nano Lett. 15 2693 [9] Popescu M N, Arizmendi C M, Salas-Brito A L and Family F 2000 Phys. Rev. Lett. 85 3321 [10] Yin Q, Li Y, Marchesoni F, Debnath D and Ghosh P K 2021 Chin. Phys. Lett. 38 040501 [11] Zhang W and Zhang J 2021 Chin. Phys. B. 30 108703 [12] Wang Q, Zheng D, He L and Ren X 2021 Chin. Phys. B30 107102 [13] Hille B 1978 Biophys. J. 22 283 [14] Hille B 1970 Prog. Biophys. Mol. Bio. 21 1 [15] Eisenberg B 1998 Acc. Chem. Res. 31 117 [16] Smit B and Maesen T LM 2008 Chem. Rev. 108 4125 [17] Keil F J, Krishna R and Coppens M 2000 Rev. Chem. Eng. 16 71 [18] Jackson E A and Hillmyer M A 2010 ACS Nano4 3548 [19] Liang M, Fu C, Xiao B, Luo L and Wang Z 2019 Int. J. Heat Mass Transfer137 365 [20] Revil A 2017 Adv. Water Res. 103 139 [21] Zhou H, Rivas G and Minton A P 2008 Annu. Rev. Biophys. 37 375 [22] Bressloff P C and Newby J M 2013 Rev. Mod. Phys. 85 135 [23] Verpoorte E 2002 Electrophoresis23 677 [24] Boukany P E, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y and Li L 2011 Nat. Nanotechnol. 6 747 [25] Beebe D J, Moore J S, Bauer J M, Yu Q, Liu R H, Devadoss C and Jo B 2000 Nature404 588 [26] Shepherd R F, Ilievski F, Choi W, Morin S A, Stokes A A, Mazzeo A D, Chen X, Wang M and Whitesides G M 2011 Proc. Natl. Acad. Sci. 108 20400 [27] Wu J, Lv K, Zhao W and Ai B 2018 Chaos:Interdiscip. J. Nonlin. Sci. 28 123102 [28] Burada P S, Hänggi P, Marchesoni F, Schmid G and Talkner P 2009 Chemphyschem10 45 [29] Bruna M and Chapman S J 2014 B. Math. Biol76 947 [30] Nygrard K 2017 Phys. Chem. Chem. Phys. 19 23632 [31] Malgaretti P, Pagonabarraga I and Rubi J M 2013 J. Chem. Phys. 138 05 [32] Marchesoni F and Savel'ev S 2009 Phys. Rev. E80 011120 [33] Bauer M, Godec A and Metzler R 2014 Phys. Chem. Chem. Phys. 16 6118 [34] Makhnovskii Y A 2019 Phys. Rev. E99 032102 [35] Dey S, Ching K and Das M 2018 J. Chem. Phys. 148 134907 [36] Li Y, Mei R, Xu Y, Kurths J, Duan J and Metzler R 2020 New J. Phys. 22 053016 [37] Zwanzig R 1992 J. Phys. Chem. 96 3926 [38] Yang X, Liu C, Li Y, Marchesoni F, Hänggi P and Zhang H 2017 Proc. Natl. Acad. Sci. USA114 9564 [39] Yang X, Zhu Q, Liu C, Wang W, Li Y, Marchesoni F, Hänggi P and Zhang H 2019 Phys. Rev. E99 020601 [40] Skaug M J, Wang L, Ding Y and Schwartz D K 2015 ACS Nano9 2148 [41] Dettmer S L, Pagliara S, Misiunas K and Keyser U F 2014 Phys. Rev. E89 062305 [42] Kannan A S, Mark A, Maggiolo D, Sardina G, Sasic S and Ström H 2021 Int. J. Multiphase Flow143 103772 [43] D'Avino G and Maffettone P L 2019 Microfluid Nanofluidics23 1 [44] Misiunas K, Pagliara S, Lauga E, Lister J R and Keyser U F 2015 Phys. Rev. Lett. 115 038301 [45] Liu C, Zhou C, Wang W and Zhang H P 2016 Phys. Rev. Lett. 117 198001 [46] Simmchen J, Katuri J, Uspal W E, Popescu M N, Tasinkevych M and Sánchez S 2016 Nat. Commun. 7 1 [47] Uspal W E, Popescu M N, Dietrich S and Tasinkevych M 2016 Phys. Rev. Lett. 117 048002 [48] Lou X, Yu N, Liu R, Chen K and Yang M 2018 Soft Matter14 1319 [49] Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61 [50] Piazza R and Parola A 2008 J. Phys.:Condens. Matter20 153102 [51] Würger A 2010 Soft Matter73 126601 [52] Michelin S and Lauga E 2015 Phys. Fluids27 111701 [53] Shen M, Ye F, Liu R, Chen K, Yang M and Ripoll M 2016 J. Chem. Phys. 145 124119 [54] Yang M and Ripoll M 2016 Soft Matter12 8564 [55] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605 [56] Padding J and Louis A A 2006 Phys. Rev. E74 031402 [57] Kapral R 2008 Adv. Chem. Phys. 140 89 [58] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1 [59] Shen M, Liu R, Hou M, Yang M and Chen K 2016 Acta Phys. Sin. 65 170201 (in Chinese) [60] Lou X, Yu N, Chen K, Zhou X, Podgornik R and Yang M 2021 Chin. Phys. B 30 ac2727 [61] Yang M, Liu R, Ye F and Chen K 2017 Soft Matter13 647 [62] Khatri N and Burada P S 2020 Phys. Rev. E102 012137 [63] Michailidou V N, Petekidis G, Swan J W and Brady J F 2009 Phys. Rev. Lett. 102 068302 [64] Li G and Ardekani A M 2014 J. Chem. Phys. 90 013010 [65] Cichocki B, Jones R B, Kutteh R and Wajnryb E 2000 J. Chem. Phys. 112 2548
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.