Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 044704    DOI: 10.1088/1674-1056/ac381b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diffusion of a chemically active colloidal particle in composite channels

Xin Lou(娄辛)1,2, Rui Liu(刘锐)2,1, Ke Chen(陈科)2,1,3, Xin Zhou(周昕)1,4,†, Rudolf Podgornik1,2,4,‡, and Mingcheng Yang(杨明成)2,1,3,§
1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
2 Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
Abstract  Diffusion of colloidal particles in microchannels has been extensively investigated, where the channel wall is either a no-slip or a slip-passive boundary. However, in the context of active fluids, driving boundary walls are ubiquitous and are expected to have a substantial effect on the particle dynamics. By mesoscale simulations, we study the diffusion of a chemically active colloidal particle in composite channels, which are constructed by alternately arranging the no-slip and diffusio-osmotic boundary walls. In this case, the chemical reaction catalyzed by the active colloidal particle creates a local chemical gradient along the channel wall, which drives a diffusio-osmotic flow parallel to the wall. We show that the diffusio-osmotic flow can significantly change the spatial distribution and diffusion dynamics of the colloidal particle in the composite channels. By modulating the surface properties of the channel wall, we can achieve different patterns of colloidal position distribution. The findings thus propose a novel possibility to manipulate colloidal diffusion in microfluidics, and highlight the importance of driving boundary walls in dynamics of colloidal particles in microchannels.
Keywords:  diffusion      composite channels      diffusio-osmotic flow      hydrodynamic effect  
Received:  16 October 2021      Revised:  02 November 2021      Accepted manuscript online:  10 November 2021
PACS:  47.57.-s (Complex fluids and colloidal systems)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874397, 11674365, and 11774393) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Xin Zhou, Rudolf Podgornik, Mingcheng Yang     E-mail:  xzhou@ucas.ac.cn;rudipod@gmail.com;mcyang@iphy.ac.cn

Cite this article: 

Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成) Diffusion of a chemically active colloidal particle in composite channels 2022 Chin. Phys. B 31 044704

[1] Vale R D 2003 Cell 112 467
[2] Ross J L, Ali M Y and Warshaw D M 2008 Curr. Opin. Plant Biol. 20 41
[3] Ross J L, Shuman H, Holzbaur E LF and Goldman Y E 2008 Biophys. J. 94 3115
[4] Howorka S and Siwy Z S 2012 Nat. Biotechnol. 30 506
[5] Gu L, Braha O, Conlan S, Cheley S and Bayley H 1999 Nature 398 686
[6] Salger T, Kling S, Hecking T, Geckeler C, Morales-Molina L and Weitz M 2009 Science 326 1241
[7] Shraiman, B I 1987 Phys. Rev. A 36 261
[8] Kopperger E, Pirzer T and Simmel F C 2015 Nano Lett. 15 2693
[9] Popescu M N, Arizmendi C M, Salas-Brito A L and Family F 2000 Phys. Rev. Lett. 85 3321
[10] Yin Q, Li Y, Marchesoni F, Debnath D and Ghosh P K 2021 Chin. Phys. Lett. 38 040501
[11] Zhang W and Zhang J 2021 Chin. Phys. B. 30 108703
[12] Wang Q, Zheng D, He L and Ren X 2021 Chin. Phys. B 30 107102
[13] Hille B 1978 Biophys. J. 22 283
[14] Hille B 1970 Prog. Biophys. Mol. Bio. 21 1
[15] Eisenberg B 1998 Acc. Chem. Res. 31 117
[16] Smit B and Maesen T LM 2008 Chem. Rev. 108 4125
[17] Keil F J, Krishna R and Coppens M 2000 Rev. Chem. Eng. 16 71
[18] Jackson E A and Hillmyer M A 2010 ACS Nano 4 3548
[19] Liang M, Fu C, Xiao B, Luo L and Wang Z 2019 Int. J. Heat Mass Transfer 137 365
[20] Revil A 2017 Adv. Water Res. 103 139
[21] Zhou H, Rivas G and Minton A P 2008 Annu. Rev. Biophys. 37 375
[22] Bressloff P C and Newby J M 2013 Rev. Mod. Phys. 85 135
[23] Verpoorte E 2002 Electrophoresis 23 677
[24] Boukany P E, Morss A, Liao W, Henslee B, Jung H, Zhang X, Yu B, Wang X, Wu Y and Li L 2011 Nat. Nanotechnol. 6 747
[25] Beebe D J, Moore J S, Bauer J M, Yu Q, Liu R H, Devadoss C and Jo B 2000 Nature 404 588
[26] Shepherd R F, Ilievski F, Choi W, Morin S A, Stokes A A, Mazzeo A D, Chen X, Wang M and Whitesides G M 2011 Proc. Natl. Acad. Sci. 108 20400
[27] Wu J, Lv K, Zhao W and Ai B 2018 Chaos:Interdiscip. J. Nonlin. Sci. 28 123102
[28] Burada P S, Hänggi P, Marchesoni F, Schmid G and Talkner P 2009 Chemphyschem 10 45
[29] Bruna M and Chapman S J 2014 B. Math. Biol 76 947
[30] Nygrard K 2017 Phys. Chem. Chem. Phys. 19 23632
[31] Malgaretti P, Pagonabarraga I and Rubi J M 2013 J. Chem. Phys. 138 05
[32] Marchesoni F and Savel'ev S 2009 Phys. Rev. E 80 011120
[33] Bauer M, Godec A and Metzler R 2014 Phys. Chem. Chem. Phys. 16 6118
[34] Makhnovskii Y A 2019 Phys. Rev. E 99 032102
[35] Dey S, Ching K and Das M 2018 J. Chem. Phys. 148 134907
[36] Li Y, Mei R, Xu Y, Kurths J, Duan J and Metzler R 2020 New J. Phys. 22 053016
[37] Zwanzig R 1992 J. Phys. Chem. 96 3926
[38] Yang X, Liu C, Li Y, Marchesoni F, Hänggi P and Zhang H 2017 Proc. Natl. Acad. Sci. USA 114 9564
[39] Yang X, Zhu Q, Liu C, Wang W, Li Y, Marchesoni F, Hänggi P and Zhang H 2019 Phys. Rev. E 99 020601
[40] Skaug M J, Wang L, Ding Y and Schwartz D K 2015 ACS Nano 9 2148
[41] Dettmer S L, Pagliara S, Misiunas K and Keyser U F 2014 Phys. Rev. E 89 062305
[42] Kannan A S, Mark A, Maggiolo D, Sardina G, Sasic S and Ström H 2021 Int. J. Multiphase Flow 143 103772
[43] D'Avino G and Maffettone P L 2019 Microfluid Nanofluidics 23 1
[44] Misiunas K, Pagliara S, Lauga E, Lister J R and Keyser U F 2015 Phys. Rev. Lett. 115 038301
[45] Liu C, Zhou C, Wang W and Zhang H P 2016 Phys. Rev. Lett. 117 198001
[46] Simmchen J, Katuri J, Uspal W E, Popescu M N, Tasinkevych M and Sánchez S 2016 Nat. Commun. 7 1
[47] Uspal W E, Popescu M N, Dietrich S and Tasinkevych M 2016 Phys. Rev. Lett. 117 048002
[48] Lou X, Yu N, Liu R, Chen K and Yang M 2018 Soft Matter 14 1319
[49] Anderson J L 1989 Annu. Rev. Fluid Mech. 21 61
[50] Piazza R and Parola A 2008 J. Phys.:Condens. Matter 20 153102
[51] Würger A 2010 Soft Matter 73 126601
[52] Michelin S and Lauga E 2015 Phys. Fluids 27 111701
[53] Shen M, Ye F, Liu R, Chen K, Yang M and Ripoll M 2016 J. Chem. Phys. 145 124119
[54] Yang M and Ripoll M 2016 Soft Matter 12 8564
[55] Malevanets A and Kapral R 1999 J. Chem. Phys. 110 8605
[56] Padding J and Louis A A 2006 Phys. Rev. E 74 031402
[57] Kapral R 2008 Adv. Chem. Phys. 140 89
[58] Gompper G, Ihle T, Kroll D M and Winkler R G 2009 Adv. Polym. Sci. 221 1
[59] Shen M, Liu R, Hou M, Yang M and Chen K 2016 Acta Phys. Sin. 65 170201 (in Chinese)
[60] Lou X, Yu N, Chen K, Zhou X, Podgornik R and Yang M 2021 Chin. Phys. B 30 ac2727
[61] Yang M, Liu R, Ye F and Chen K 2017 Soft Matter 13 647
[62] Khatri N and Burada P S 2020 Phys. Rev. E 102 012137
[63] Michailidou V N, Petekidis G, Swan J W and Brady J F 2009 Phys. Rev. Lett. 102 068302
[64] Li G and Ardekani A M 2014 J. Chem. Phys. 90 013010
[65] Cichocki B, Jones R B, Kutteh R and Wajnryb E 2000 J. Chem. Phys. 112 2548
[1] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[2] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[3] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[4] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[5] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[8] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[9] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[10] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[11] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[12] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[13] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[14] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[15] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
No Suggested Reading articles found!