Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037402    DOI: 10.1088/1674-1056/ac1f0a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch

Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟)
State Key Laboratory of New Energy Renewable Power System, North China Electric Power University, Beijing 102206, China
Abstract  With its commercialization, the second-generation (2G) high temperature superconducting (HTS) RE—Ba—Cu—O (REBCO, RE is rare earth) tape is extensively applied to the superconducting magnets in the high magnetic fields. However, unlike low temperature superconducting (LTS) magnets, the HTS magnet cannot operate in the persistent current mode (PCM) due to the immature superconducting soldering technique. In this paper, an exciting method for two HTS sub-loops, so-called charging and load loops, is proposed by flux pump consisting of exciting coil and controllable thermal switch. Two HTS sub-loops are made of an REBCO tape with two slits. An exciting coil with iron core is located in one sub-loop and is supplied with a triangular waveform current so that magnetic field is generated in another sub-loop. The influence of magnetic flux on induced current in load loop is presented and verified in experiment at 77 K. The relationship between the induced magnetic flux density and the current on the sub-loops having been calibrated, magnetic flux density, and induced current are obtained. The results show that the HTS sub-loops can be excited by a coil with thermal switch and the induced current increases with magnetic flux of exciting coil increasing, which is promising for persistent current operation mode of HTS magnets.
Keywords:  bridge      high temperature superconducting (HTS) sub-loops      induced current      thermal switch  
Received:  01 July 2021      Revised:  01 July 2021      Accepted manuscript online:  19 August 2021
PACS:  74.72.-h (Cuprate superconductors)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  84.71.Mn (Superconducting wires, fibers, and tapes)  
  85.25.Am (Superconducting device characterization, design, and modeling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51977078).
Corresponding Authors:  Yin-Shun Wang     E-mail:  yswang@ncepu.edu.cn

Cite this article: 

Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟) Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch 2022 Chin. Phys. B 31 037402

[1] Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q and Dou W Z 2019 Chin. Sci. Bull. 64 827
[2] Yan W H, Cai C B and Zhou D F 2019 Physics 48 733 (in Chinese)
[3] Liu J H, Wang Q L, Qin L, Zhou B Z, Wang K S, Wang Y H, Wang L, Zhang Z L, Dai Y M, Liu H, Hu X N, Wang H, Cui C Y, Wang D G, Wang H, Sun J H, Sun W S and Xiong L 2020 Supercond. Sci. Technol. 33 03
[4] Weijers H W, Markiewicz W D, Gavrilin A V, Voran A J, Viouchkov Y L, Gundlach S R, Noyes P D, Abraimov D V, Bai H Y, Hannahs S T and Murphy T P 2016 IEEE Trans. Appl. Supercond. 26 4300807
[5] Wang Y S 2013 Fundamental Elements of Applied Superconductivity in Electrical Engineering (USA) (John Wiley & Sons Pte. Ltd.)
[6] Maeda H and Yanagisawa Y 2014 IEEE Trans. Appl. Supercond. 24 4602412
[7] Noguchi S, Park D, Jiho L, Li Y, Michael P C and Iwasa Y 2019 IEEE Trans. Appl. Supercond. 29 4301005
[8] Yoshikawa M, Yonemura N, Yachida T, Imura T, Shirai Y and Yokoyama S 2016 IEEE Trans. Appl. Supercond. 26 4401105
[9] Welding. Micro joining of 2$nd generation high temperature superconductors (General requirements for the procedure, BS EN ISO 17279-1) (2018)
[10] Lee H G, Kim J G, Lee S W, Kim W S, Lee S W, Choi K D, Hong G W and Ko T K 2006 Physica C 445-448 1099
[11] Yuan X, Wang Y S, Hu Y D, Chen H, Liu M C, Pi W and Cai C B 2018 IEEE Trans. Appl. Supercond. 29 4700405
[12] Yuan X, Wang Y S, Hou Y B, Kan C T and Sun M J 2018 IEEE Trans. Appl. Supercond. 28 4603005
[13] Sheng J, Zhang M, Wang Y W, Li X J, Patel J and Yuan W J 2017 Supercond. Sci. Technol. 30 094002
[14] Qiu D R, Wu W, Pan Y H, Xu S, Zhang Z M, Li Z L, Li Y, Wang Y W, Wang L B, Zhao Y, Zhang Z W, Yang P, Hong Z Y and Jin Z J 2017 IEEE Trans. Appl. Supercond. 27 4601605
[15] Qiu D R, Li Z Y, Wu W, Wang D C, Li X F, Hong Z Y, Ryu K and Jin Z J 2018 IEEE Trans. Appl. Supercond. 28 4601305
[16] Levin G A, Barnes P N, Murphy J, Brunke L and Long J D 2008 Appl. Phys. Lett. 93 062504
[17] Cruz V, Telles G T, Santos B, Ferreira A C and Junior R 2020 IEEE Trans. Appl. Supercond. 30 8200306
[18] Ali M Z, Zheng J X, Huber F, Zhang Z W, Yuan W J and Zhang M 2020 Supercond. Sci. Technol. 33 ab794a
[19] Xia J, Bai H Y, Lu J, Andrew V G, Zhou Y H and Weijers H W 2015 Supercond. Sci. Technol. 28 125004
[20] Brambilla R, Grilli F and Martini L 2007 Supercond. Sci. Technol. 20 16
[21] Rostila L, Soderlund L, Mikkonen R and Lehtonen J 2007 Physica C 467 91
[1] Theoretical investigation of fluorescence changes caused bymethanol bridge based on ESIPT reaction
Xinglei Zhang(张星蕾), Lixia Zhu(朱丽霞), Zhengran Wang(王正然), Bifa Cao(曹必发), Qiao Zhou(周悄), You Li(李尤), Bo Li(栗博), Hang Yin(尹航), and Ying Shi(石英). Chin. Phys. B, 2021, 30(11): 118202.
[2] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[3] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[4] Effect of transient space-charge perturbation on carrier transport in high-resistance CdZnTe semiconductor
Yu Guo(郭玉), Gang-Qiang Zha(查钢强), Ying-Rui Li(李颖锐), Ting-Ting Tan(谭婷婷), Hao Zhu(朱昊), Sen Wu(吴森). Chin. Phys. B, 2019, 28(11): 117201.
[5] Fabrication of Al air-bridge on coplanar waveguide
Zhen-Chuan Jin(金震川), Hai-Teng Wu(吴海腾), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(10): 100310.
[6] Experimental design to measure the anchoring energy on substrate surface by using the alternating-current bridge
Hui-Ming Hao(郝慧明), Yao-Yao Liu(刘瑶瑶), Ping Zhang(张平), Ming-Lei Cai(蔡明雷), Xiao-Yan Wang(王晓燕), Ji-Liang Zhu(朱吉亮), Wen-Jiang Ye(叶文江). Chin. Phys. B, 2017, 26(8): 086102.
[7] The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology
Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃). Chin. Phys. B, 2017, 26(8): 088401.
[8] Bridge-free fabrication process for Al/AlOx/Al Josephson junctions
Ke Zhang(张珂), Meng-Meng Li(李蒙蒙), Qiang Liu(刘强), Hai-Feng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2017, 26(7): 078501.
[9] Comparison of performance between bipolar and unipolar double-frequency sinusoidal pulse width modulation in a digitally controlled H-bridge inverter system
Lei Bo (雷博), Xiao Guo-Chun (肖国春), Wu Xuan-Lü (吴旋律). Chin. Phys. B, 2013, 22(6): 060509.
[10] An AlGaN/GaN HEMT with enhanced breakdown and near-zero breakdown voltage temperature coefficient
Xie Gang (谢刚), Tang Cen (汤岑), Wang Tao (汪涛), Guo Qing (郭清), Zhang Bo (张波), Sheng Kuang (盛况), Wai Tung Ng. Chin. Phys. B, 2013, 22(2): 026103.
[11] Codimension-two bifurcation of axial loaded beam bridge subjected to an infinite series of moving loads
Yang Xin-Wei (杨新伟), Tian Rui-Lan (田瑞兰), Li Hai-Tao (李海涛). Chin. Phys. B, 2013, 22(12): 120502.
[12] Symmetrical dynamical characteristic of peak and valley current-mode controlled single-phase H-bridge inverter
Liu Hong-Chen (刘洪臣), Li Fei (李飞), Su Zhen-Xia (苏振霞), Sun Li-Shan (孙立山). Chin. Phys. B, 2013, 22(11): 110501.
[13] Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid
Zhou Shi-Qi(周世琦). Chin. Phys. B, 2008, 17(10): 3812-3821.
[14] Micromechanical tunable vertical-cavity surface-emitting lasers
Guan Bao-Lu(关宝璐), Guo Xia(郭霞), Deng Jun(邓军), Qu Hong-Wei(渠红伟), Lian Peng(廉鹏), Dong Li-Min(董立敏), Chen Min(陈敏), and Shen Guang-Di(沈光地). Chin. Phys. B, 2006, 15(12): 2959-2962.
[15] Conductance of three-terminal molecular bridge based on tight-binding theory
Wang Li-Guang (王利光), Li Yong (李勇), Yu Ding-Wen (郁鼎文), Tagami Katsunori, Tsukada Masaru. Chin. Phys. B, 2005, 14(5): 1011-1014.
No Suggested Reading articles found!