Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 018503    DOI: 10.1088/1674-1056/ac05b0
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications

Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼)§
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China
Abstract  Voltage-controlled magnetic skyrmions have attracted special attention because they satisfy the requirements for well-controlled high-efficiency and energy saving for future skyrmion-based neuron device applications. In this work, we propose a compact leaky-integrate-fire (LIF) spiking neuron device by using the voltage-driven skyrmion dynamics in a multiferroic nanodisk structure. The skyrmion dynamics is controlled by well tailoring voltage-induced piezostrains, where the skyrmion radius can be effectively modulated by applying the piezostrain pulses. Like the biological neuron, the proposed skyrmionic neuron will accumulate a membrane potential as skyrmion radius is varied by inputting the continuous piezostrain spikes, and the skyrmion radius will return to the initial state in the absence of piezostrain. Therefore, this skyrmion radius-based membrane potential will reach a definite threshold value by the strain stimuli and then reset by removing the stimuli. Such the LIF neuronal functionality and the behaviors of the proposed skyrmionic neuron device are elucidated through the micromagnetic simulation studies. Our results may benefit the utilization of skyrmionic neuron for constructing the future energy-efficient and voltage-tunable spiking neural networks.
Keywords:  magnetic skyrmion      leaky-integrate-fire      multiferroic heterostructure      artificial neuron  
Received:  20 February 2021      Revised:  18 May 2021      Accepted manuscript online:  27 May 2021
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  84.35.+i (Neural networks)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.78.Cd (Micromagnetic simulations ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11902316, 51902300, and 11972333) and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ19F010005, LY21F010011, and LZ19A020001).
Corresponding Authors:  Guo-Liang Yu, Hao-Miao Zhou     E-mail:  glyu@cjlu.edu.cn;hmzhou@cjlu.edu.cn

Cite this article: 

Ming-Min Zhu(朱明敏), Shu-Ting Cui(崔淑婷), Xiao-Fei Xu(徐晓飞), Sheng-Bin Shi(施胜宾), Di-Qing Nian(年迪青), Jing Luo(罗京), Yang Qiu(邱阳), Han Yang(杨浛), Guo-Liang Yu(郁国良), and Hao-Miao Zhou (周浩淼) Voltage-controllable magnetic skyrmion dynamics for spiking neuron device applications 2022 Chin. Phys. B 31 018503

[1] Zhang D, Zeng L, Cao K, Wang M, Peng S, Zhang Y, Zhang Y, Klein J O, Wang Y and Zhao W 2016 IEEE Trans. Biomed. Circuits Syst. 10 828
[2] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Dièny B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[3] Yang K, Malhotra A, Lu S and Sengupta A 2020 IEEE Trans. Electron Dev. 67 1340
[4] Wang C, Wang Z, Wang M, Zhang X, Zhang Y and Zhao W 2020 IEEE Trans. Electron Dev. 67 2621
[5] Brigner W H, Friedman J S, Hassan N, Jiang-Wei L, Hu X, Saha D, Bennett C H, Marinella M J, Incorvia J A C and Garcia-Sanchez F 2019 IEEE Trans. Electron Dev. 66 4970
[6] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
[7] Akopyan F, Sawada J, Cassidy A, Alvarez-Icaza R, Arthur J, Merolla P, Imam N, Nakamura Y, Datta P, Nam G, Taba B, Beakes M, Brezzo B, Kuang J B, Manohar R, Risk W P, Jackson B and Modha D S 2015 IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 34 1537
[8] Lee D, Kwak M, Moon K, Choi W, Park J, Yoo J, Song J, Lim S, Sung C and Banerjee W 2019 Adv. Electron. Mater. 5 1800866
[9] Grollier J, Querlioz D, Camsari K Y, Everschor-Sitte K, Fukami S and Stiles M D 2020 Nat. Electron. 3 360
[10] Fukami S and Ohno H 2018 J. Appl. Phys. 124 151904
[11] Sengupta A, Shim Y and Roy K 2017 IEEE Trans. Biomed. Circuits Syst. 10 1152
[12] Fert A, Reyren N and Cros V 2017 Nat. Rev. Mater. 2 17031
[13] Zhang X, Zhou Y, Mee Song K, Park T E, Xia J, Ezawa M, Liu X, Zhao W, Zhao G and Woo S 2020 J. Phys.: Condens. Matter 32 143001
[14] Chen M C, Sengupta A and Roy K 2018 IEEE Trans. Magn. 54 1500207
[15] Azam M A, Bhattacharya D, Querlioz D and Atulasimha J 2018 J. Appl. Phys. 124 152122
[16] Prychynenko D, Sitte M, Litzius K, Krüger B, Bourianoff G, Kläui M, Sinova J and Everschor-Sitte K 2018 Phys. Rev. Appl. 9 014034
[17] Li S, Kang W, Huang Y, Zhang X, Zhou Y and Zhao W 2017 Nanotechnology 28 31LT01
[18] Chen X, Kang W, Zhu D, Zhang X, Lei N, Zhang Y, Zhou Y and Zhao W 2018 Nanoscale 10 6139
[19] Liang X, Zhang X, Xia J, Ezawa M, Zhao Y, Zhao G and Zhou Y 2020 Appl. Phys. Lett. 116 122402
[20] Yanes R, Garcia-Sanchez F, Luis R F, Martinez E, Raposo V, Torres L and Lopez-Diaz L 2019 Appl. Phys. Lett. 115 132401
[21] Li Z, Zhang Y, Huang Y, Wang C, Zhang X, Liu Y, Zhou Y, Kang W, Koli S C and Lei N 2018 J. Magn. Magn. Mater. 455 19
[22] Wang Y, Wang L, Xia J, Lai Z, Tian G, Zhang X, Hou Z, Gao X, Mi W, Feng C, Zeng M, Zhou G, Yu G, Wu G, Zhou Y, Wang W, Zhang X X and Liu J 2020 Nat. Commun. 11 3577
[23] Ba Y, Zhuang S, Zhang Y, Wang Y, Gao Y, Zhou H, Chen M, Sun W, Liu Q, Chai G, Ma J, Zhang Y, Tian H, Du H, Jiang W, Nan C, Hu J M and Zhao Y 2021 Nat. Commun. 12 322
[24] Luo S, Xu N, Guo Z, Zhang Y, Hong J and You L 2019 IEEE Electron Dev. Lett. 40 635
[25] Yu Z, Shen M, Zeng Z, Liang S, Liu Y, Chen M, Zhang Z, Lu Z, You L, Yang X, Zhang Y and Xiong R 2020 Nanoscale Adv. 2 1309
[26] Tang J, Kong L, Wang W, Du H and Tian M 2019 Chin. Phys. B 28 087503
[27] Zhang S L, Wang W W, Burn D M, Peng H, Berger H, Bauer A, Pfleiderer C, van der Laan G and Hesjedal T 2018 Nat. Commun. 9 2115
[28] Dong D, Cai L, Li C, Liu B, Li C and Liu J 2019 J. Phys. D: Appl. Phys. 52 295001
[29] Wang Q, Domann J, Yu G, Barra A, Wang K L and Carman G P 2018 Phys. Rev. Appl. 10 034052
[30] Voto M, Lopez-Diaz L and Martinez E 2017 Sci. Rep. 7 13559
[31] Hu J M, Yang T and Chen L Q 2020 Acta Mater. 183 145
[1] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[2] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[3] Progress and challenges in magnetic skyrmionics
Haifeng Du(杜海峰) and Xiangrong Wang(王向荣). Chin. Phys. B, 2022, 31(8): 087507.
[4] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[5] Lorentz transmission electron microscopy for magnetic skyrmions imaging
Jin Tang(汤进), Lingyao Kong(孔令尧), Weiwei Wang(王伟伟), Haifeng Du(杜海峰), Mingliang Tian(田明亮). Chin. Phys. B, 2019, 28(8): 087503.
[6] Lorentz transmission electron microscopy studies on topological magnetic domains
Li-Cong Peng(彭丽聪), Ying Zhang(张颖), Shu-Lan Zuo(左淑兰), Min He(何敏), Jian-Wang Cai(蔡建旺), Shou-Guo Wang(王守国), Hong-Xiang Wei(魏红祥), Jian-Qi Li(李建奇), Tong-Yun Zhao(赵同云), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(6): 066802.
[7] Colossal magnetoresistance in manganites and related prototype devices
Liu Yu-Kuai (刘愉快), Yin Yue-Wei (殷月伟), Li Xiao-Guang (李晓光). Chin. Phys. B, 2013, 22(8): 087502.
No Suggested Reading articles found!