Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 120701    DOI: 10.1088/1674-1056/26/12/120701
GENERAL Prev   Next  

Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits

Zhi Zhou(周知)1, Dong-Sheng Yu(于东升)1, Xiao-Yuan Wang(王晓媛)2
1. School of Electrical and Power Engineering, China University of Minning and Technology, Xuzhou 221116, China;
2. School of Electronic Information, Hangzhou Dianzi University, Hangzhou 310018, China
Abstract  In this paper, by referring to the concept of coupled memristors (MRs) and considering the flux coupling connection, the constitutive relations for describing the coupled memcapacitors (MCs) are theoretically deduced. The dynamic behaviors of dual coupled MCs in serial and parallel connections are analyzed in terms of identical or opposite polarities for the first time. Based on the derived constitutive relations of the two coupled MCs, the modified relaxation oscillators (ROs) are obtained with the purpose of achieving controllable oscillation frequency and duty cycle. In consideration of different parameter configurations, the experimental investigation is carried out by using practical off-the-shelf circuit components to verify the correction of the theoretical calculation with numerical simulation of the coupled MCs and its application in ROs.
Keywords:  memcapacitor      coupling strength      relaxation oscillator      parallel/serial connection  
Received:  17 July 2017      Revised:  16 August 2017      Accepted manuscript online: 
PACS:  07.50.Ek (Circuits and circuit components)  
  84.30.Ng (Oscillators, pulse generators, and function generators)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
Fund: Project supported by the Fundamental Research Funds for China Central Universities (Grant No. 2015XKMS028).
Corresponding Authors:  Dong-Sheng Yu     E-mail:

Cite this article: 

Zhi Zhou(周知), Dong-Sheng Yu(于东升), Xiao-Yuan Wang(王晓媛) Investigation on the dynamic behaviors of the coupled memcapacitor-based circuits 2017 Chin. Phys. B 26 120701

[1] Chua L O 1971 IEEE Trans. Circ. Th. 18 507
[2] Di Ventra M, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717
[3] Bao B C, Yu J J, Hu F W and Liu Z 2014 Int. J. Bifur. Chaos 24 1450143
[4] Yu Q, Bao B C, Hu F W, Xu Q, Chen M and Wang J 2014 Acta Phys. Sin. 63 240505(in Chinese)
[5] Wu H G, Bao B C and Chen M 2014 Chin. Phys. B 23 118401
[6] Wang G Y, Cai B Z and Jin P P 2016 Chin. Phys. B 25 010503
[7] Pershin Y V and Ventra M D 2012 Proc. IEEE 100 2071
[8] Li C B, Li C D and Huang T G 2013 Neurocomputing 12 370
[9] Pei J S, Wright J P, Todd M D, Masri S F and Gay-Balmaz F 2015 Nonlinear Dyn. 80 457
[10] Driscoll T, Quinn J, Klein S, Kim H T, Kim B J, Pershin Y V, Di Ventra M and Basov D N 2010 Appl. Phys. Lett. 97 093502
[11] Wang G Y, Cai B Z, Jin P P and Hu T L 2016 Chin. Phys. B 25 010503
[12] Yu D S, Liang Y, Iu H H C and Chua L O 2014 IEEE Trans. Circuits and Sys. Ⅱ, Exp. Briefs 61 758
[13] Yu D S, Liang Y, Iu H H C and Hu Y H 2014 Chin. Phys. B 23 070702
[14] Biolek D, Biolek Z and Biolkova V 2010 Electron. Lett. 46 520
[15] Yu D S, Liang Y, Chen H and Iu H H C 2013 IEEE Trans. Circuits and Sys. Ⅱ, Exp. Briefs 60 207
[16] Biolek D, Biolkova V, Kolka Z and Dobes J 2016 Circ. Sys. Signal. Pr. 35 43
[17] Fouda M E, Khatib M A and Radwan A G 2013 25th International Conference on Microelectronics (ICM), December 15-18, 2013, Beirut, Lebanon, p. 1
[18] Sah M P, Budhathoki R K, Yang C and Kim H 2013 Int. J. Bifur. Chaos 23 1330017
[19] Fouda M E and Radwan A G 2015 Circ. Sys. Signal. Pr. 34 2765
[20] Fouda M E and Radwan A G 2015 Int. J. Circ. Theor. Appl. 43 959
[21] Yuan F, Wang G Y and Wang X W 2017 Chaos 27 033103
[22] Wang G Y, Zang S C, Wang X Y, Yuan F and Iu H H C 2017 Chaos 27 013110
[23] Wang G Y, Shi C B, Wang X W and Yuan F 2017 Math. Probl. Eng. 2017 6504969
[24] Cai W R and Tetzlaff R 2014 IEEE International Symposium on Circuits and Systems (ISCAS), June 1-5, 2014, Melbourne, Australia, p. 1259
[25] Yu D S, Zhou Z, Iu H H C, Fernando T and Hu Y 2016 IEEE Trans. Circuits and Sys. Ⅱ, Exp. Briefs 63 1101
[1] Modeling and character analyzing of multiple fractional-order memcapacitors in parallel connection
Xiang Xu(徐翔), Gangquan Si(司刚全), Zhang Guo(郭璋), and Babajide Oluwatosin Oresanya. Chin. Phys. B, 2022, 31(1): 018401.
[2] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[3] Generating mechanism of pathological beta oscillations in STN-GPe circuit model: A bifurcation study
Jing-Jing Wang(王静静), Yang Yao(姚洋), Zhi-Wei Gao(高志伟), Xiao-Li Li(李小俚), Jun-Song Wang(王俊松). Chin. Phys. B, 2020, 29(5): 058701.
[4] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[5] Memcapacitor model and its application in a chaotic oscillator
Guang-Yi Wang(王光义), Bo-Zhen Cai(蔡博振), Pei-Pei Jin(靳培培), Ti-Ling Hu(胡体玲). Chin. Phys. B, 2016, 25(1): 010503.
[6] Periodic synchronization of community networks with non-identical nodes uncertain parameters and adaptive coupling strength
Chai Yuan (柴元), Chen Li-Qun (陈立群). Chin. Phys. B, 2014, 23(3): 030504.
[7] Coupling strength effect on shot noise in boron devices
Li Gui-Qin (李桂琴), Guo Yong (郭永). Chin. Phys. B, 2013, 22(11): 117304.
[8] Collective behaviour of climate indices in the North Pacific air–sea system and its potential relationships with decadal climate changes
Wang Xiao-Juan(王晓娟), Zhi Rong(支蓉), He Wen-Ping(何文平), and Gong Zhi-Qiang(龚志强) . Chin. Phys. B, 2012, 21(2): 029201.
[9] Stochastic synchronization for time-varying complex dynamical networks
Guo Xiao-Yong(郭晓永) and Li Jun-Min(李俊民) . Chin. Phys. B, 2012, 21(2): 020501.
[10] Entanglement in a generalized Jaynes--Cummings model
Zhang Guo-Feng(张国锋) and Liu Jia(刘佳). Chin. Phys. B, 2007, 16(12): 3595-3600.
No Suggested Reading articles found!